Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today's wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on sensitive skin areas. The sensors, primarily based on polyethylene terephthalate (PET) or polyimide (PI) substrates, might also cause pressure or unease during insertion due to the skin's irregular deformation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
The development of pressure sensors with high sensitivity and a low detection limit for subtle mechanical force monitoring and the understanding of the sensing mechanism behind subtle mechanical force monitoring are of great significance for intelligent technology. Here, we proposed a graphene-based two-stage enhancement pressure sensor (GTEPS), and we analyzed the difference between subtle mechanical force monitoring and conventional mechanical force monitoring. The GTEPS exhibited a high sensitivity of 62.
View Article and Find Full Text PDFAs the focus on physical health increases, the market demand for flexible wearable sensors increases. Textiles combined with sensitive materials and electronic circuits can form flexible, breathable high-performance sensors for physiological-signal monitoring. Carbon-based materials such as graphene, carbon nanotubes (CNTs), and carbon black (CB) have been widely utilized in the development of flexible wearable sensors due to their high electrical conductivity, low toxicity, low mass density, and easy functionalization.
View Article and Find Full Text PDFSensors enable the detection of physiological indicators and pathological markers to assist in the diagnosis, treatment, and long-term monitoring of diseases, in addition to playing an essential role in the observation and evaluation of physiological activities. The development of modern medical activities cannot be separated from the precise detection, reliable acquisition, and intelligent analysis of human body information. Therefore, sensors have become the core of new-generation health technologies along with the Internet of Things (IoTs) and artificial intelligence (AI).
View Article and Find Full Text PDFContinuous blood pressure (BP) monitoring is of great significance for the real-time monitoring and early prevention of cardiovascular diseases. Recently, wearable BP monitoring devices have made great progress in the development of daily BP monitoring because they adapt to long-term and high-comfort wear requirements. However, the research and development of wearable continuous BP monitoring devices still face great challenges such as obvious motion noise and slow dynamic response speeds.
View Article and Find Full Text PDFWith the aging of society and the increase in people's concern for personal health, long-term physiological signal monitoring in daily life is in demand. In recent years, electronic skin (e-skin) for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations. Among them, the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life.
View Article and Find Full Text PDFCracks play an important role in strain sensors. However, a systematic analysis of how cracks influence the strain sensors has not been proposed. In this work, an intelligent and highly sensitive strain sensor based on indium tin oxide (ITO)/polyurethane (PU) micromesh is realized.
View Article and Find Full Text PDFAs the aging population increases in many countries, electronic skin (e-skin) for health monitoring has been attracting much attention. However, to realize the industrialization of e-skin, two factors must be optimized. The first is to achieve high comfort, which can significantly improve the user experience.
View Article and Find Full Text PDFHigh-performance electromagnetic interference (EMI) shielding materials with ultralow density, excellent flexibility, and good mechanical properties are highly desirable for aerospace and wearable electronics. Herein, honeycomb porous graphene (HPG) fabricated by laser scribing technology is reported for EMI shielding and wearable applications. Due to the honeycomb structure, the HPG exhibits an EMI shielding effectiveness (SE) up to 45 dB at a thickness of 48.
View Article and Find Full Text PDFThe human body is a "delicate machine" full of sensors such as the fingers, nose, and mouth. In addition, numerous physiological signals are being created every moment, which can reflect the condition of the body. The quality and the quantity of the physiological signals are important for diagnoses and the execution of therapies.
View Article and Find Full Text PDF