When a hypersonic seeker flies at high speed within the atmosphere, intense interaction with the incoming flow gradually develops into a complex turbulent flow field. This interaction results in complex thermal responses at the seeker window, causing aerodynamic optical effects such as image shift, jitter, and blur of the target image, thereby restricting the seeker's detection capability and accuracy. This paper uses a numerical simulation model for the guidance performance of a hypersonic seeker under aerodynamic optical transmission effects.
View Article and Find Full Text PDFImages captured in fog are often affected by scattering. Due to the absorption and scattering of light by aerosols and water droplets, the image quality will be seriously degraded. The specific manifests are brightness decrease, contrast decrease, image blur, and noise increase.
View Article and Find Full Text PDFAt hypersonic velocities, the turbulent flow field generated by an aircraft, along with its temperature distribution, leads to significant aerodynamic optical effects that severely impede the performance of internal optical systems. This study proposes a method for analyzing the temporal characteristics of imaging degradation in a detector window infrared imaging system under different field angles of hypersonic velocity. Based on heat transfer theory, a method for solving the transient temperature field in the optical window of a high-speed aircraft is derived and established, considering unsteady thermal conduction-radiation coupling.
View Article and Find Full Text PDFOptical speckle fields with both non-Rayleigh statistics and nondiffracting characteristics in propagation are an important light source for many applications. However, tailoring either non-Rayleigh statistical speckles or nondiffracting speckles are only investigated independently in previous studies. Here, we report the first observation of optical speckles that remain diffraction-free over a long axial distance while keeping non-Rayleigh statistics simultaneously.
View Article and Find Full Text PDFAnalog optical computing based on metasurfaces has attracted much attention for achieving high-speed calculating without the electronic processing unit. Wavefront coding imaging systems involve the joint design of an encoded image-capturing module and decoding postprocessing algorithms to obtain a required final image. The decoding postprocessing algorithms, as a typical deconvolution computation, require an additional electronic processing unit to yield a high-quality decoded image.
View Article and Find Full Text PDFMetasurfaces have shown great potential in versatile areas such as vortex-beam generators, metalenses, holograms and so on. However, chromatic error hinders metasurfaces, especially metalenses, from wider applications. In this paper, we demonstrate a novel design for a transmissive mid-infrared achromatic bifocal metalens with polarization sensitivity.
View Article and Find Full Text PDFTypical methods to decode a complex orbital-angular-momentum (OAM) spectrum suffer from issues such as a narrow OAM range, unstable interferometer, and long measuring time. In this Letter, we use a single-beam interferometer to measure the complex OAM spectrum with a single-pixel detector. The complex OAM spectrum ranging from -10 to 10 can be measured in 11 ms with the fidelity approach of 97.
View Article and Find Full Text PDFAccurately sensing the surrounding 3D scene is indispensable for drones or robots to execute path planning and navigation. In this paper, a novel monocular depth estimation method was proposed that primarily utilizes a lighter-weight Convolutional Neural Network (CNN) structure for coarse depth prediction and then refines the coarse depth images by combining surface normal guidance. Specifically, the coarse depth prediction network is designed as pre-trained encoder-decoder architecture for describing the 3D structure.
View Article and Find Full Text PDFThe imaging quality of the aerodynamically heated optical dome was evaluated under the comprehensive influence of aero-optical transmission effect and aero-thermal radiation effect. The ray propagating algorithm based on the fourth order Runge-Kutta method was used to trace the target ray and the thermal radiation ray of the optical dome. Three imaging quality evaluation parameters were proposed to evaluate aero-optical effect: Modulation transfer function (MTF), irradiance, peak signal-to-noise ratio (PSNR) of distorted images.
View Article and Find Full Text PDFWe investigated the influence of altitude on aero-optic imaging quality degradation of the hemispherical optical dome. Boundary conditions for the aerodynamic heating effect of the optical dome were calculated by solving the Reynolds-averaged Navier-Stokes equations provided by FLUENT. The finite element model and the thermal-structure simulation results of the optical dome were obtained using ANSYS.
View Article and Find Full Text PDFTraditional optical domes are spherical, which introduces constant aberrations with look angle. However, spherical domes are not optimum for reducing aerodynamic drag. Conformal domes deviate from spherical to reduce drag but they generate dynamic aberrations varying significantly with look angle in the field of regard.
View Article and Find Full Text PDFThis paper investigated the geometry and aberration characteristics of conicoidal conformal domes. First, on the basis of previous research, we got the expression that was suitable for describing the external surface of the conicoidal conformal dome. Based on the theory of differential geometry, this paper first proved that the Dupin index line of a quadric surface was an ellipsoid and the radius of curvature had extreme values in the meridian plane and sagittal plane.
View Article and Find Full Text PDFIn this paper, we propose one method based on the use of both dark and dot point spread functions (PSFs) to extend depth of field in hybrid imaging systems. Two different phase modulations of two phase masks are used to generate both dark and dot PSFs. The quartic phase mask (QPM) is used to generate the dot PSF.
View Article and Find Full Text PDFFoveated imaging, such as that evolved by biological systems to provide high angular resolution with a reduced space-bandwidth product, also offers advantages for man-made task-specific imaging. Foveated imaging systems using exclusively optical distortion are complex, bulky, and high cost, however. We demonstrate foveated imaging using a planar array of identical cameras combined with a prism array and superresolution reconstruction of a mosaicked image with a foveal variation in angular resolution of 5.
View Article and Find Full Text PDFWe propose the use of two asymmetrical phase masks combined with the subtracted imaging method to enhance the signal-to-noise ratio in wavefront coding systems. This subtracted imaging technique is similar to the variable pinhole diameter in confocal microscopy. Two different phase modulations of same phase masks are employed to promote the magnitude of the optical transfer function (OTF).
View Article and Find Full Text PDFJ Asian Nat Prod Res
November 2015
Two new capsaicin analogs, N-(3-methoxy-4-hydroxyphenethyl)-tetracosanamide (1) and N-(3,4-dihydroxyphenethyl)-tetracosanamide (2), along with one new flavonoidal glycoside pinnatifin E (3) were isolated from the ethanolic extract of the seeds of Vaccaria segetalis. Their structures were elucidated on the basis of spectroscopic methods including 1D, 2D NMR, MS, and other spectroscopic techniques, as well as by comparison with the relevant literatures. All compounds were evaluated for their coagulation Factor Xa inhibition activities.
View Article and Find Full Text PDFWavefront coding as an optical-digital hybrid imaging technique can be used to extend the depth of field. The key to wavefront coding lies in the design of suitable phase masks to achieve the invariant imaging properties over a wide range of defocus. In this Letter, we propose another phase mask with a tangent function to enrich the odd symmetrical kind of phase masks.
View Article and Find Full Text PDFA conformal dome optical system was established and aberration characteristics of the dome were investigated using Zernike aberration theory. The conformal dome was designed with gradient index element. The designing method was introduced and the optimizing results were analyzed in detail.
View Article and Find Full Text PDFWe investigated the influences exerted by the nonuniform aerodynamic flow field surrounding the optical window on the imaging quality degradation of an airborne optical system. The density distribution of flow fields around three typical optical windows, including a spherical window, an ellipsoidal window, and a paraboloidal window, were calculated by adopting the Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras model provided by FLUENT. The fourth-order Runge-Kutta algorithm based ray-tracing program was used to simulate the optical transmission through the aerodynamic flow field.
View Article and Find Full Text PDFA conformal dome was designed and the aberration characteristics of the dome were analyzed using Zernike aberration theory. By deriving the equation used to correct Zernike aberrations, the phase coefficients and the phase orders of diffractive optical elements (DOEs) used to correct primary Zernike aberrations were obtained. DOEs were simulated to correct the aberrations of the conformal dome by using optical design software, and the aberrations of the conformal dome decreased dramatically.
View Article and Find Full Text PDFWe use a wavefront coding approach to control thermal defocus aberration in an IR imaging system. The design method of athermalized system using a wavefront coding technique is discussed. An athermalized long wave IR optical system, which works at temperatures ranging from -40 °C to 60 °C, is designed by employing a cubic phase mask.
View Article and Find Full Text PDFAn approximate expression of the peak position of the point-spread function (PSF) of wavefront coding systems with a cubic phase mask (CPM) is derived and verified by simulation results. An approach called the nonaxial Strehl ratio (NASR) is used to evaluate the performance of wavefront coding systems with defocus aberrations. The characteristics of the NASR are investigated.
View Article and Find Full Text PDF