A novel series of 2-phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles were designed and synthesized for selective COX-2 inhibition with potent anti-inflammatory activity. Among the compounds tested, 9g (2-(3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazole) was found to be the most potent inhibitor of COX-2 with IC50 of 0.31 μM showing promising degree of anti-inflammatory activity in the carrageenan-induced rat paw edema model with ED50 of 74.
View Article and Find Full Text PDFExtensive research on tea catechins, mainly (-)-epigallocatechin gallate, has shown numerous health promoting effects. However, various clinical studies demonstrated several issues associated with tea catechins which account for their poor systemic bioavailability. In order to improve pharmacological activity and bioavailability of natural tea catechins, two major strategies have been adopted to date which include synthesizing catechin analogs/prodrugs and the development of novel drug delivery systems.
View Article and Find Full Text PDFWe have previously demonstrated the vasorelaxant activity of 1,3,4-oxadiazole derivative (NOX-1) through L-type Ca2+ channel blockage. In the present study, we investigated whether the correction of endothelial dysfunction is dependent on the normalization of high blood pressure levels by 1,3,4-oxadiazole derivative (NOX-1) in deoxycorticosterone acetate (DOCA-salt) and N(G)-nitro-l-arginine (L-NNA) hypertensive rats. In DOCA-salt and L-NNA hypertensive rats, the mean systolic blood pressure (MSBB) was 185.
View Article and Find Full Text PDF