Publications by authors named "Shouliang Wu"

Two-dimensional (2D) semiconductors with anisotropic properties (e.g., mechanical, optical, and electric transport anisotropy) have long been sought in materials research, especially 2D semiconducting sheets with strong anisotropy in carrier mobility, e.

View Article and Find Full Text PDF

Ruthenium nanoparticles (Ru NPs) with face-centered cubic (fcc) structure possess higher catalytic activity than that with hexagonal close-packed (hcp) structure. However, a high temperature above 1800 K is needed for the formation of the metastable fcc Ru phase. In this study, we present a tunable fabrication strategy of fcc and hcp Ru NPs by laser ablation of Ru target in solvents.

View Article and Find Full Text PDF

Understanding the stability evolution of the silver nanoparticles (Ag NPs) in colloid has great benefits for its controllable preparation, storage and application. Herein, uncapped Ag NPs with diameter of 1.66 ± 0.

View Article and Find Full Text PDF

For the potential use of Au nanoparticles (NPs) in photothermal therapy, it is important and effective to achieve the uniaxial assembly of Au NPs to allow enhanced absorption in the near infrared (NIR) region. Herein, we first presented the construction of amorphous selenium encapsulated gold (Se@Au) chain-oligomers by successive laser ablation of Au and Se targets in sodium chloride solution without other toxic precursors, stabilizers, or templating molecules. Se@Au chain-oligomers showed evidently enhanced NIR absorption and excellent photothermal transduction efficiency (η), which was higher than 47% at 808 nm.

View Article and Find Full Text PDF

Downsizing copper nanoparticles (Cu NPs) can effectively improve their catalytic activity, but simultaneously ensuring the structural stability is always a challenge. In this study, by laser ablating a Cu target in graphene oxide (GO) solution along with a reduction treatment, pure Cu NPs (2.0 ± 0.

View Article and Find Full Text PDF

Agglomeration-triggered deactivation of supported platinum electrocatalysts markedly hinders their application in methanol oxidation reaction (MOR). In this study, graphene-supported nickel-iron layered double hydroxide (NiFe-LDH/rGO), in which Fe was introduced to replace Ni partially in the Ni(OH) lattice to provide stronger metal-support bonding sites, was utilized to immobilize Pt nanoparticles (NPs). Given the optimized metal-support interfacial contact (Fe-O(H)-Pt) between Pt NPs and NiFe-LDH/rGO nanosheets for Pt/NiFe-LDH/rGO electrocatalysts, the Pt/NiFe-LDH/rGO electrocatalysts displayed dramatically enhanced durability than that of Pt/Ni(OH)/rGO counterpart as well as commercial Pt/C, and 86.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the enhancement of gas-sensing performance by loading gold (Au) nanoparticles onto tungsten oxide (WO) nanoplatelets, creating a hybrid nanostructure through a process called laser ablation in liquids (LAL) followed by aging and annealing.
  • - The Au nanoparticles, averaging around 7.8 nm, were found to be well-dispersed on the WO nanoplatelets, significantly improving their gas-sensing capabilities.
  • - The Au-decorated WO nanoplatelets demonstrated a lower operating temperature (320 °C) and a 3.5-fold increase in response to ethanol, showing high selectivity for ethanol over other vapors and maintaining stability during repeated measurements.
View Article and Find Full Text PDF

Laser melting in liquids (LML) is one of the most effective methods to prepare bimetallic alloys; however, despite being an ongoing focus of research, the process involved in the formation of such species remains ambiguous. In this paper, we prepared two types of Pt-based bimetallic alloys by LML, including Pt-Au alloys and Pt-iron group metal (iM=Fe/Co/Ni) alloys, and investigated the corresponding mechanisms of alloying process. Detailed component and structural characterizations indicate that laser irradiation induced a quite rapid formation process (not exceeding 10 s) of Pt-Au alloy nanospheres, and the crystalline structures of Pt-Au alloys is determined by the monometallic constituents with higher content.

View Article and Find Full Text PDF

Understanding the thermodynamic behavior and growth kinetics of colloidal nanoparticles (NPs) is essential to synthesize materials with desirable structures and properties. In this paper, we present specific uncapped Te colloidal NPs obtained through laser ablation of Te in various protic or aprotic solvents. At ambient temperature and pressure, the uncapped Te NPs spontaneously exhibited analogous evolution and growth of "nanoparticle-nanochain-agglomerate-microsphere" in different solvents.

View Article and Find Full Text PDF

Incorporating noble metal nanoparticles on the surface or the inner side of semiconductors to form a hybrid nanostructure is an effective route for improving the gas sensing performance of the semiconductors. In this study, we present novel Au-decorated ZnO nanospheres (Au-ZnO NSs) obtained by the laser irradiation of liquids. Structural characterization indicated that the Au-ZnO NSs consisted of single crystalline ZnO NSs with a few Au nanoparticles decorated on their surfaces and abundant encapsulated Au nanoparticles with relatively small sizes.

View Article and Find Full Text PDF

We report a simple and environmentally friendly route to prepare platinum/reduced graphene oxide (Pt/rGO) nanocomposites (NCs) with highly reactive MnOx colloids as reducing agents and sacrificial templates. The colloids are obtained by laser ablation of a metallic Mn target in graphene oxide (GO)-containing solution. Structural and morphological investigations of the as-prepared NCs revealed that ultrafine Pt nanoparticles (NPs) with an average size of 1.

View Article and Find Full Text PDF