Cognitive impairment is a common adverse effect of electroconvulsive therapy (ECT) during treatment for severe depression. Dexmedetomidine (DEX), a sedative-anesthetic drug, is used to treat post-ECT agitation. However, it is not known if DEX can protect against ECT-induced cognitive impairments.
View Article and Find Full Text PDFLittle is known about the physiological or pharmacological properties of alarin, a new neuropeptide belonging to the galanin family. We previously showed that alarin has an antidepressant-like effect and is associated with a decrease in the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis that is observed in patients with depression using unpredictable chronic mild stress (UCMS) mouse model of depression. However, the mechanisms underlying these effects have not been uncovered.
View Article and Find Full Text PDFIncreasing evidence indicates that dexmedetomidine (DEX), a selective α2-adrenergic receptor agonist, has a neuroprotective effect against cerebral injury. However, it remains unknown whether and how DEX functionally prevents the pathological form of synaptic plasticity caused by ischemia in the hippocampal CA1 neurons. To address this issue, we analyzed the role of DEX using a model of brain ischemia (oxygen and glucose deprivation, OGD) referred to as post-ischemic LTP (i-LTP).
View Article and Find Full Text PDFOur previous and other studies have confirmed that a selective M1 and M3 receptor antagonist, Penehyclidine hydrochloride (PHC), has neuroprotection activity in cerebral ischemia. However, the precise mechanisms of protection of PHC are still elusive. In this study we analyzed PHC-mediated neuroprotection on a model of brain ischemia (oxygen and glucose deprivation), named postischemic LTP (i-LTP).
View Article and Find Full Text PDF