Publications by authors named "Shoujing Zhu"

ERECTA (ER) is a type of receptor-like kinase that contributes a crucial mission in various aspects of plant development, physiological metabolism, and abiotic stresses responses. This study aimed to explore the functional characteristics of the SiER family genes in millet (Setaria italica L.), focusing on the growth phenotype and drought resistance of Arabidopsis overexpressed SiER4_X1 and SiER1_X4 genes (SiERs ).

View Article and Find Full Text PDF

Plants have developed precise defense mechanisms against cadmium (Cd) stress, with vacuolar compartmentalization of Cd2+ being a crucial process in Cd detoxification. The transport of Cd into vacuoles by these cation / H+ antiporters is powered by the pH gradient created by proton pumps. In this study, the full-length cDNA of a vacuolar H+-pyrophosphatase (V-PPase) gene from Boehmeria nivea (ramie), BnVP1, was isolated using the rapid amplification of cDNA ends (RACE) method.

View Article and Find Full Text PDF

Phytochelatins (PCs) play important roles in the detoxification of and tolerance to heavy metals in plants. The synthesis of PCs is catalyzed by phytochelatin synthase (PCS), which is activated by heavy metal ions. In this study, we isolated a gene, , from the bast fiber crop ramie () using the RACE (rapid amplification of cDNA ends) method.

View Article and Find Full Text PDF

MYB-related transcription factors play important roles in plant development and response to various environmental stresses. In the present study, a novel MYB gene, designated as BnMYB2 (GenBank accession number: MF741319.1), was isolated from Boehmeria nivea using rapid amplification of cDNA ends (RACE) and RT-PCR on a sequence fragment from a ramie transcriptome.

View Article and Find Full Text PDF

Ramie (Boehmeria nivea), a perennial herb belongs to Urticaceae family, is a rapid growth and high biomass crop with highly tolerant and accumulative to heavy metals. However, the gene expression and regulation caused by cadmium (Cd) in ramie has not been well studied. In the present study, a gene expression database of ramie root in the absence (control) or presence of 100 μM Cd was established.

View Article and Find Full Text PDF