Publications by authors named "Shoujing Guo"

Purpose: Regenerative therapies for retinal diseases include cell and gene therapy modalities that are targeted to the subretinal space. Several recent clinical trials have shown that the morbidity of surgical access is the major limitation of safe subretinal space delivery. We aimed to develop an image-guided procedure for minimally invasive subretinal access (MISA) as a platform to deliver therapeutic agents for the treatment of degenerative retinal diseases.

View Article and Find Full Text PDF

We reported a design and evaluation of an optical coherence tomography (OCT) sensor-integrated 27 gauge vertically inserted razor edge cannula (VIREC) for pneumatic dissection of Descemet's membrane (DM) from the stromal layer. The VIREC was inserted vertically at the apex of the cornea to the desired depth near DM. The study was performed using ex vivo bovine corneas (N = 5) and rabbit corneas (N = 5).

View Article and Find Full Text PDF

Deep anterior lamellar keratoplasty (DALK) is a partial-thickness cornea transplant procedure in which only the recipient's stroma is replaced, leaving the host's Descemet's membrane (DM) and endothelium intact. This highly challenging "Big Bubble" procedure requires micron accuracy to insert a hydro-dissection needle as close as possible to the DM. Here, we report the design and evaluation of a downward viewing common-path optical coherence tomography (OCT) guided hydro-dissection needle for DALK.

View Article and Find Full Text PDF

We present a parallel Monte Carlo (MC) simulation platform for rapidly generating synthetic common-path optical coherence tomography (CP-OCT) A-scan image dataset for image-guided needle insertion. The computation time of the method has been evaluated on different configurations and 100000 A-scan images are generated based on 50 different eye models. The synthetic dataset is used to train an end-to-end convolutional neural network (Ascan-Net) to localize the Descemet's membrane (DM) during the needle insertion.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) with a robust depth-resolved attenuation compensation method for a wide range of imaging applications is proposed and demonstrated. The proposed novel OCT attenuation compensation algorithm introduces an optimized axial point spread function (PSF) to modify existing depth-resolved methods and mitigates under and overestimation in biological tissues, providing a uniform resolution over the entire imaging range. The preliminary study is implemented using A-mode numerical simulation, where this method achieved stable and robust compensation results over the entire depth of samples.

View Article and Find Full Text PDF

We reported a parallel Monte Carlo simulation platform for generating OCT cornea images and training the convolutional neural network. The trained network showed improved segmentation results when applied to the ex-vivo cornea A-scan images.

View Article and Find Full Text PDF

Numerous mechanisms have been proposed for polymerization to provide qualitative and quantitative prediction of how monomers spatially and temporally arrange into the polymeric chains. However, less is known about this process at the molecular level because the ultrafast chemical reaction is inaccessible for any form of microscope so far. Here, to address this unmet challenge, a stimulated Raman scattering microscope based on collinear multiple beams (COMB-SRS) is demonstrated, which allows label-free molecular imaging of polymer synthesis in action at speed of 2000 frames per second.

View Article and Find Full Text PDF

Tissue temperature monitoring during cutaneous laser therapy can lead to safer and more effective treatments. In this study, we investigate the use of speckle variance optical coherence tomography (svOCT) to monitor real-time temperature changes in the excised human skin tissue sample during laser irradiation. To accomplish this, we combined the pulse laser system with a reference-based svOCT system.

View Article and Find Full Text PDF

Significance: Selective retina therapy (SRT) selectively targets the retinal pigment epithelium (RPE) and reduces negative side effects by avoiding thermal damages of the adjacent photoreceptors, the neural retina, and the choroid. However, the selection of proper laser energy for the SRT is challenging because of ophthalmoscopically invisible lesions in the RPE and different melanin concentrations among patients or even regions within an eye.

Aim: We propose and demonstrate SRT monitoring based on speckle variance optical coherence tomography (svOCT) for dosimetry control.

View Article and Find Full Text PDF

Deep anterior lamellar keratoplasty (DALK) is a highly challenging procedure for cornea transplant that involves removing the corneal layers above Descemet's membrane (DM). This is achieved by a "big bubble" technique where a needle is inserted into the stroma of the cornea down to DM and the injection of either air or liquid. DALK has important advantages over penetrating keratoplasty (PK) including lower rejection rate, less endothelial cell loss, and increased graft survival.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) has been gaining acceptance in image-guided microsurgery as a noninvasive imaging technique. However, when using B-mode OCT imaging, it is difficult to continuously keep the surgical tool in the imaging field, and the image of the tissue beneath the tool is corrupted by shadow effects. The alternative using C-mode OCT imaging is either too slow in imaging speed when operating in a high-resolution mode, or provides a poor image resolution in a high-speed mode, with the sweep rate less than one million hertz.

View Article and Find Full Text PDF