Publications by authors named "Shouhu Xuan"

Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer.

View Article and Find Full Text PDF

Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (, native chemical ligation and transition metal catalysis), biological (, post-translational enzymatic modification and genetic code reprogramming), and supramolecular (, mechanically interlocked, metal-directed folding and self-assembly noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations.

View Article and Find Full Text PDF

Warmth preservation in cold climates requires a long-term heat supply. Conventional thermal devices usually deliver excessive heat and have difficulty preventing heat loss. Herein, to achieve durable thermal comfort, an asymmetric composite (AAAC) is devised through vacuum-filtrating silver nanowires (AgNWs) onto the surface of a poly(ethylene glycol) (PEG)-infiltrated aramid nanofiber aerogel.

View Article and Find Full Text PDF

Although bimetallic noble nanostructures often possess high activity in nanocatalysis, their controllable fabrication, tunable catalytic activity, and easy separation remain significant challenges. In this study, an FeO@AgPd/Polydopamine (FeO@AgPd/PDA) nanosnowman loaded with an AgPd nanocage was designed by a one-step template-disposition-redox polymerization method. The AgPd nanocage endowed the product with high catalytic activity for the reduction of organic pollutants (4-NP, MO, MB).

View Article and Find Full Text PDF

With the prevalence of drug-resistant bacteria and the waning effects of antibiotics, nanoplatform has become an effective strategy for fighting infections. This work reports a dipolar-hollowed α-FeO@Au/Polydopamine (PDA) nanospindle which possesses both photothermal-photodynamic (PTT-PDT) coupling antibacterial and drug carrying performance. Firstly, the spindle type α-FeO@Au/PDA particle was prepared by a simple one-step strategy and then the dipolar-hollow structure was obtained by controlling etching the inside α-FeO core with hydrochloric acid.

View Article and Find Full Text PDF

Percutaneous thermotherapy, a minimally invasive operational procedure, is employed in the ablation of deep tumor lesions by means of target-delivering heat. Conventional thermal ablation methods, such as radiofrequency or microwave ablation, to a certain extent, are subjected to extended ablation time as well as biosafety risks of unwanted overheating. Given its effectiveness and safety, percutaneous thermotherapy gains a fresh perspective, thanks to magnetic hyperthermia.

View Article and Find Full Text PDF

Wastewater discharged from industrial, agricultural and livestock production contains a large number of harmful bacteria and organic pollutants, which usually cause serious harm to human health. Therefore, it is urgent to find a "one-stone-two-birds" strategy with good antimicrobial and pollutant degradation activity for treating waste water. In this paper, SiO@AuAg/Polydopamine (SiO@AuAg/PDA) core/shell nanospheres, which possessed synergistic "Ag-release-photothermal" antibacterial and catalytic behaviors, have been successfully prepared a simple redox polymerization method.

View Article and Find Full Text PDF

The magnetorheological effect is a critically important mechanical property of magnetic fluids. Accurately capturing the macroscopic properties of magnetorheological fluids with elongated particle forms, such as nanosphere chains, remains a challenging task, particularly due to the complexities arising from particle asymmetry. Traditional particle dynamics primarily utilize spherical particles as computational units, but this approach can lead to significant inaccuracies, especially when analyzing nonspherical magnetorheological fluids, due to the neglect of particle asymmetry.

View Article and Find Full Text PDF

Multistimuli responsiveness and programmable shape recovery are crucial for soft actuators in soft robotics, electronics, and wearables. However, existing strategies for actuation cannot attain power-free shape retention after removing the external energy supply. Here, a self-assembled density deposition method was developed to fabricate an electrothermal-NIR-magnetic triple-response actuator which was composed of cellulose nanofiber/poly(vinyl alcohol)/liquid metal (CNF/PVA/LM) and magnetic polydimethylsiloxane (MPDMS) layer.

View Article and Find Full Text PDF

The global health crisis of bacterial resistance to antibiotics requires innovative antibacterial strategies. One promising solution is the exploitation of multifunctional nanoplatforms based on non-resistant antibacterial mechanisms. This work reports a novel FeO@Au/polydopamine (PDA) nanodurian with excellent photothermal-magnetomechanic synergistic antibacterial effects.

View Article and Find Full Text PDF

With the rapid development of social industrialization, environmental problems seriously threaten people's health, especially water pollution. Therefore, there is an urgent need to construct a multifunctional nanoplatform for different scenarios. Two-dimensional MXene@AgAu@PDA nanosheets loaded with AgAu bimetallic nanocages have been prepared by a one-step method.

View Article and Find Full Text PDF

This work illustrates a "soft-toughness" coupling design method to integrate the shear stiffening gel (SSG), natural leather, and nonwoven fabrics (NWF) for preparing leather/MXene/SSG/NWF (LMSN) composite with high anti-impact protecting, piezoresistive sensing, electromagnetic interference (EMI) shielding, and human thermal management performance. Owing to the porous fiber structure of the leather, the MXene nanosheets can penetrate leather to construct a stable 3D conductive network; thus both the LM and LMSN composites exhibit superior conductivity, high Joule heating temperature, and an efficient EMI shielding effectiveness. Due to the excellent energy absorption of the SSG, the LMSN composites possess a huge force-buffering (about 65.

View Article and Find Full Text PDF

Pathogenic bacteria and difficult-to-degrade pollutants in water have been serious problems that always plague people. Therefore, finding a "one stone-two birds" method that can quickly catalyze the degradation of pollutants and show effective antibacterial behavior become an urgent requirement. This work reports a facile one-step strategy for fabricating a Rambutan-like FeO@AgAu@PDA (FeO@AgAu@Polydopamine) core/shell nanosphere with both catalytic and antibacterial activities which can be critically improved by externally applying an NIR laser irradiation (NIR, 808 nm) and a rotating magnetic field.

View Article and Find Full Text PDF

Stretchable configuration occupies priority in devising flexible conductors used in intelligent electronics and implantable sensors. While most conductive configurations cannot suppress electrical variations against extreme deformation and ignore inherent material characteristics. Herein, a spiral hybrid conductive fiber (SHCF) composed of aramid polymeric matrix and silver nanowires (AgNWs) coating is fabricated through shaping and dipping processes.

View Article and Find Full Text PDF

In this work, a MXene@AgPd/polydopamine (PDA) nanosheet with excellent photothermal conversion efficiency was successfully synthesized by a simple redox-oxidative polymerization method. Interestingly, AgPd bimetallic nanocrystals sandwiched between a MXene nanosheet and PDA layer have cage-like nanostructure, which is favorable for high catalytic efficiency and antibacterial performance. Importantly, the MXene@AgPd/PDA nanosheet exhibits good catalytic activity for the reduction of 4-nitrophenol (1.

View Article and Find Full Text PDF

Liquid metal (LM) is increasingly employed as a conductive filler in soft and flexible elastomer composites owing to its favorable conductivity and liquid fluidity. However, the high density of LM inevitably increases the weight of composites, which brings limitations in large-area and weight-sensitive applications. This work reports a flexible and stretchable elastomer composite composed of pod-like contacting lightweight LM foam spheres and polydimethylsiloxane matrix (LMS/PDMS).

View Article and Find Full Text PDF

Due to the abuse of antibiotics, the sensitivity of patients to antibiotics is gradually reduced. This work develops a FeO@SiO@Au/PDA nanochain which shows an interesting magnetic-field-induced improvement of its photothermal antibacterial property. First, SiO was wrapped on FeO nanospheres assembled in a chain to form a FeO@SiO nanocomposite with a chain-like nanostructure.

View Article and Find Full Text PDF

Pervasive mechanical impact is growing requirement for advanced high-performance protective materials, while the electromagnetic interference (EMI) confers severe risk to human health and equipment operation. Bioinspired structural composites achieving outstanding safeguards against a single threat have been developed, whereas the synergistic implementation of impact/EMI coupling protection remains a challenge. This work proposes the concept of nacre-mimetic hierarchical composite duplicating the "brick-and-mortar" arrangement, which consists of freeze-drying constructed chitosan/MXene lamellar architecture skeleton embedded in a shear stiffening polyborosiloxane matrix.

View Article and Find Full Text PDF

Bioactive materials have been extensively developed for the adjuvant therapy of cancer. However, few materials can meet the requirements for the postoperative resection of hepatocellular carcinoma (HCC) due to massive bleeding and high recurrence. In particular, combination therapy for HCC has been highly recommended in clinical practice, including surgical resection, interventional therapy, ablation therapy and chemotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • Thermally conductive elastomers are important for everyday use but typically suffer from low stretchability and toughness, which limits their practical applications.
  • A new composite is created by incorporating room-temperature liquid metal microdroplets into a polyborosiloxane elastomer, resulting in significantly improved fracture strain and toughness.
  • This innovative LM/PBSE composite offers enhanced thermal conductivity and anti-impact properties, making it suitable for applications like thermal camouflage and heat-dissipating materials in electronics.
View Article and Find Full Text PDF

Soft magnetic actuators with programmable structure design and controllable deformation ability based on 3D printing technology have attracted extensive attention. In this paper, a novel 3D printing strategy is developed to manufacture the ultraflexible magnetic actuator, in which the printed material is composed of magnetic particles and thermoplastic rubber materials. Different from the traditional fused deposition printing, this printing strategy introduces screw extrusion technology to the heating components of the printer to overcome the problem of filament buckling in the flexible material.

View Article and Find Full Text PDF

Current surgical single modality treatments for hepatocellular carcinoma (HCC) were restricted by recurrence, blood loss, significant trauma, and poor prognostic. Although multidisciplinary strategies for HCC treatment have been highly recommended by the clinical guidelines, there was limited choice of materials and treatments. Herein, we reported an formed magnetic hydrogel with promising bioapplicable thermal-responsiveness, strong adhesion in wet conditions, high magnetic hyperthermia, and biocompatibility, leading to efficient HCC multidisciplinary treatment including postoperative treatment and transarterial embolization therapy.

View Article and Find Full Text PDF

Liquid metal (LM)-based elastomers have received growing interest for a wide range of applications such as soft robotics and flexible electronics. This work reports a stretchable and bendable liquid metal droplets embedded elastomer (LMDE) composite, which consists of liquid metal droplets (LMDs) filler and carbonyl iron particles (CIPs)/polydimethylsiloxane (PDMS) hybrid matrix. The reversible switching of the composite from an insulator to a conductor can be realized through the contact and noncontact process between the LMDs.

View Article and Find Full Text PDF

This paper reports a plasma treatment (PT) method for improving the surface hydrophilicity and mechanical properties of cellulose in reconstituted tobacco paper-base. The absorption and infiltration rates of water droplets on PT-reconstituted tobacco paper-base-15 s were significantly accelerated. Notably, the increased content of methylene and alkyl groups enabled the tobacco paper-base to absorb more useful substrates in the tobacco extract after plasma treatment.

View Article and Find Full Text PDF

Antimicrobial materials are expected to be alternatives for antibiotics against multidrug-resistant bacteria. In this paper, non-spherical α-FeO@Au/PDA core/shell nanoparticles with tunable shapes are synthesized by a one-step oxidation-redox polymerization method toward near infrared light-responsive antibacterial therapy. The thickness and composition of the Au/PDA hybrid shell can be controlled by varying the concentration of HAuCl and the dopamine precursor.

View Article and Find Full Text PDF