Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA.
View Article and Find Full Text PDFSingle-molecule correlated chemical probing (smCCP) is an experimentally concise strategy for characterizing higher-order structural interactions in RNA. smCCP data yield rich, but complex, information about base pairing, conformational ensembles, and tertiary interactions. To date, through-space communication specifically measuring RNA tertiary structure has been difficult to isolate from structural communication reflective of other interactions.
View Article and Find Full Text PDFCryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA, which we demonstrate with the 86-nucleotide thiamine pyrophosphate (TPP) riboswitch, and visualizing the riboswitch ligand binding pocket at 2.
View Article and Find Full Text PDFA long-standing objective of metabolic engineering has been to exogenously increase the expression of target genes. In this research, we proposed the permanent RNA replication system using DNA as a template to store genetic information in bacteria. We selected Qβ phage as the RNA replication prototype and made many improvements to achieve target gene expression enhancement directly by increasing mRNA abundance.
View Article and Find Full Text PDFObjective: RNAe is a new method that enhances protein expression at the post-transcriptional level. RNAe utility was further explored to improve endogenous protein expression.
Results: Transgenic mice were created by targeting RNAe to growth hormone gene into the C57/BL mouse genome by transposon mediated integration; the mice showed a heavier body weight and longer body length compared with normal mice.
In this study, a universal protein expression enhancement RNA tool, termed RNAe, was developed by modifying a recently discovered natural long non-coding RNA. At the moment, RNAe is the only technology for gene expression enhancement, as opposed to silencing, at the post-transcriptional level. With this technology, an expression enhancement of 50-1000% is achievable, with more than 200% enhancement achieved in most cases.
View Article and Find Full Text PDFCell-substrate interaction is important in tissue engineering. Vascular smooth muscle cells (VSMCs) cultured on the microgrooved surface of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) showed a distinctive polarized morphology and a high expression level of let-7a compared with the flat substrates. LIMK2, a crucial regulator of actin dynamics, was identified as a new target of let-7a.
View Article and Find Full Text PDF