In this paper, we propose a technique for a fiber-based optical frequency dissemination system with remote passive phase noise cancellation. At the remote site, a 1×2 fiber pigtailed acousto-optic modulator (AOM) with two diffraction order outputs (0 and -1 order) is employed as the phase-compensated device, the undesired phase noise of fiber link introduced by environmental perturbations are passively canceled at remote sites. Different from other existing schemes, the proposed technique harnesses the benefits of remote radio frequency (RF) independence and low-temperature sensitivity in this noise-suppression configuration.
View Article and Find Full Text PDFThe pulsed optically pumped (POP) atomic clock has demonstrated unexpected performance in terms of frequency stability and drift. However, it remains a huge challenge to make this type of atomic clock more compact. Herein, we report the design of a miniaturized physics package, which is equipped with a magnetron microwave cavity holding a vapor cell of 1.
View Article and Find Full Text PDFIn this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site.
View Article and Find Full Text PDFWe investigated the optomechanical dynamics and explored the quantum phase of a Bose-Einstein condensate in a ring cavity. The interaction between the atoms and the cavity field in the running wave mode induces a semiquantized spin-orbit coupling (SOC) for the atoms. We found that the evolution of the magnetic excitations of the matter field resembles that of an optomechanical oscillator moving in a viscous optical medium, with very good integrability and traceability, regardless of the atomic interaction.
View Article and Find Full Text PDFDetection of the microwave (MW) field with high accuracy is very important in the physical science and engineering fields. Herein, an atomic Rabi resonance-based MW magnetic field sensor with a high-dynamic-range is reported, where α and β Rabi resonances are used to measure MW fields. In MW measurement experiments, the sensor successfully measured a magnetic field of about 10 nT at 9.
View Article and Find Full Text PDFOptical atomic clocks produce highly stable frequency standards and frequency combs bridge clock frequencies with hundreds of terahertz difference. In this paper, we propose a hybrid clock scheme, where a light source pumps an active optical clock through a microresonator-based nonlinear third harmonic process, serves as a passive optical clock via indirectly locking its frequency to an atomic transition, and drives a chip-scale microcomb whose mode spacing is stabilized using the active optical clock. The operation of the whole hybrid system is investigated through simulation analysis.
View Article and Find Full Text PDFWith the rapid development of microwave photonics technology, high-speed processing and ultra-weak signal detection capability have become the main bottlenecks in many applications. Thanks to the ultra-weak signal detection capability and the extremely low timing jitter properties of single-photon detectors, the combination of single-photon detection and classical microwave photonics technology may provide a solution to break the above bottlenecks. In this paper, we first report a novel concept of single-photon microwave photonics (SP-MWP), a SP-MWP signal processing system with phase shifting and frequency filtering functionalities is demonstrated based on a superconducting nanowire single photon detector (SNSPD) and a successive time-correlated single photon counting (TCSPC) module.
View Article and Find Full Text PDFIn fiber-based quantum information processing with energy-time entangled photon pairs, optimized dispersion compensation is vital to preserve the strong temporal correlation of the photon pairs. We propose and experimentally verify that, by simply tuning the wavelength of the entangled photon pairs, nonlocal dispersion cancellation (NDC) can provide a widely flexible and finely adjustable solution for optimizing the dispersion compensation, which cannot be reached with the traditional local dispersion cancellation (LDC) instead. By way of example, when a 50 km-long single-mode fiber (SMF) is dispersion compensated by a 6.
View Article and Find Full Text PDFA cryogenic cesium atomic fountain clock is a novel clock with the microwave cavity and atomic free flight region placed in liquid nitrogen. On the one hand, the blackbody radiation shift is reduced at cryogenic temperature. On the other hand, the vacuum in the atomic free flight region is optimized, and the background gas collision shift reduced.
View Article and Find Full Text PDFThe two-way quantum clock synchronization has been shown to provide femtosecond-level synchronization capability and security against symmetric delay attacks, thus becoming a prospective method to compare and synchronize distant clocks with enhanced precision and safety. In this letter, a field test of two-way quantum synchronization between a H-maser and a Rb clock linked by a 7 km-long deployed fiber is implemented by using time-energy entangled photon-pair sources. Limited by the intrinsic frequency stability of the Rb clock, the achieved time stability at 30 s is measured as 32 ps.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2022
We describe the design and implementation of a compact laser system for the pulsed optically pumped (POP) rubidium (Rb) cell atomic clock. The laser system includes packaged optics for sub-Doppler absorption, acousto-optic modulation and light beam expansion, and dedicated electronics for laser diode reliable single-mode operation and laser frequency stabilization. With beat measurements between two identical laser systems, the laser frequency stability was found to be 3.
View Article and Find Full Text PDFSecond-order Zeeman frequency shift is one of the major systematic factors affecting the frequency uncertainty performance of cesium atomic fountain clock. Second-order Zeeman frequency shift is calculated by experimentally measuring the central frequency of the (1,1) or (-1,-1) magnetically sensitive Ramsey transition. The low-frequency transition method can be used to measure the magnetic field strength and to predict the central fringe of (1,1) or (-1,-1) magnetically sensitive Ramsey transition.
View Article and Find Full Text PDFLaser intensity noise is one of the main limiting factors in pulsed vapor cell clocks. To reduce the contribution of the laser intensity noise to detection signal in the pulsed optically pumped atomic clock, a scheme based on the differential Faraday rotation angle is proposed. Theoretically, the Ramsey fringes, the sensitivity of clock frequency to laser intensity fluctuation and the signal to noise ratio for absorption, differential, and Faraday rotation angle methods are calculated and compared.
View Article and Find Full Text PDFWe experimentally investigate the optical storage of perfect optical vortex (POV) and spatially multimode perfect optical vortex (MPOV) beams via electromagnetically induced transparency (EIT) in a hot vapor cell. In particular, we study the role that phase gradients and phase singularities play in reducing the blurring of the retrieved images due to atomic diffusion. Three kinds of manifestations are enumerated to demonstrate such effect.
View Article and Find Full Text PDFJ Am Mosq Control Assoc
December 2020
The present research aimed to evaluate the larvicidal activity of several recently discovered natural repellents formulated in lotions against larvae of Aedes aegypti. We used a modified larval bioassay method by the World Health Organization standards in evaluating larval mortality at 24-, 48-, and 72-h exposure. Among the test repellents, 2-undecanone showed 100% mortality of Ae.
View Article and Find Full Text PDFHigh-precision nonlocal temporal correlation identification in entangled photon pairs is critical to measure the time offset between remote independent time scales for many quantum information applications. The first nonlocal correlation identification was reported in 2009, which extracts the time offset via the algorithm of iterative fast Fourier transformations and their inverse. The best identification resolution is restricted by the peak identification threshold of the algorithm, and thus the time offset calculation precision is limited.
View Article and Find Full Text PDFBenefiting from the unique quantum feature of nonlocal dispersion cancellation (NDC), the strong temporal correlation of frequency-entangled photon pair source can be maintained from the unavoidable dispersive propagation. It has thus played a major role in many fiber-based quantum information applications. However, the limit of NDC due to finite frequency entanglement has not been quantified.
View Article and Find Full Text PDFIn this Letter, a hybrid frequency-time spectrograph combining a tunable optical filter and a dispersive element is presented for measurement of the spectral properties of the two-photon state. In comparison with the previous single-photon spectrograph utilizing the dispersive Fourier transformation (DFT) technique, this method is advanced since it avoids the need for additional wavelength calibration and the electronic laser trigger for coincidence measurement; therefore, its application is extended to continuous wave (CW) pumped two-photon sources. The achievable precision of the spectrum measurement has also been discussed in theory and demonstrated experimentally with a CW pumped periodically poled lithium niobate (PPLN) waveguide-based spontaneous parametric down-conversion photon source.
View Article and Find Full Text PDFNonlocal wavelength-to-time mapping between frequency-entangled photon pairs generated with the process of spontaneous parametric down-conversion is theoretically analyzed and experimentally demonstrated. The spectral filtering pattern experienced by one photon in the photon pair will be non-locally mapped into the time domain when the other photon propagates inside a dispersion-compensation fiber with large group velocity dispersion. Our work, for the first time, points out that the spectral bandwidth of the pump laser will become the dominated factor preventing the improvement of the spectral resolution when the involved group velocity dispersion is large enough, which provides an excellent tool for characterizing the resolution of a nonlocal wavelength-to-time mapping for further quantum information applications.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2020
We report a high-performance pulsed optically pumped (POP) Rb clock based on a novel magnetron-type microwave cavity. The cavity has a volume of 30 mL, enabling a highly homogenous microwave field distribution. With the laser frequency tuning to the ground-state hyperfine level F = 2 of the D line, we observe a Ramsey fringe contrast of 52% in terms of optical absorption detection.
View Article and Find Full Text PDFQuantum clock synchronization schemes utilizing frequency-entangled pulses have flourished for their potentially superior precision to the classical protocols. In this Letter, a new experimental record based on the second-order quantum interference algorithm is reported, to the best of our knowledge. The synchronization accuracy between two parties separated by a 6 km fiber coiling link, which is evaluated by the time offset shift relative to that with the fibers removed, has been measured to be 13±1 ps.
View Article and Find Full Text PDFIn this paper, a quantum-based method for measuring the microwave magnetic field in free space is presented by exploring atomic Rabi resonance in the clock transition of Cs. A compact cesium glass cell serving as the microwave magnetic field sensing head was used to measure the spatial distribution of microwave radiation from an open-ended waveguide antenna. The measured microwave magnetic field was not restricted by other microwave devices.
View Article and Find Full Text PDFA concise laser system for optically pumped cesium beam clocks is presented. The laser's frequency is locked by a fluorescence signal, produced by the interaction between a cesium atomic beam and laser. A cesium oven with a longer atom source collimator, formed by an array of channels, was used to reduce the divergence angle of the cesium atomic beam.
View Article and Find Full Text PDFChirality represents a kind of symmetry breaking characterized by the noncoincidence of an object with its mirror image and has been attracting intense attention in a broad range of scientific areas. The recent realization of spin-orbit coupling in ultracold atomic gases provides a new perspective to study quantum states with chirality. In this Letter, we demonstrate that the combined effects of spin-orbit coupling and interatomic soft-core long-range interaction can induce an exotic supersolid phase in which the chiral symmetry is broken with spontaneous emergence of circulating particle current.
View Article and Find Full Text PDF