Segmental bone defects caused by trauma and disease represent a major clinical problem worldwide. Current treatment options are limited and often associated with poor outcomes and severe complications. Bone engineering is a promising alternative solution, but a number of technical challenges must be addressed to allow for effective and reproducible construction of segmental grafts that meet the size and geometrical requirements needed for individual patients and routine clinical applications.
View Article and Find Full Text PDFBone engineering opens the possibility to grow large amounts of tissue products by combining patient-specific cells with compliant biomaterials. Decellularized tissue matrices represent suitable biomaterials, but availability, long processing time, excessive cost, and concerns on pathogen transmission have led to the development of biomimetic synthetic alternatives. We recently fabricated calcium phosphate cement (CPC) scaffolds with variable macroporosity using a facile synthesis method with minimal manufacturing steps and demonstrated long-term biocompatibility in vitro.
View Article and Find Full Text PDF