Larch, a widely distributed tree in boreal Eurasia, is experiencing rapid warming across much of its distribution. A comprehensive assessment of growth on warming is needed to comprehend the potential impact of climate change. Most studies, relying on rigid calendar-based temperature series, have detected monotonic responses at the margins of boreal Eurasia, but not across the region.
View Article and Find Full Text PDFUnder climate change circumstances, increasing studies have reported the temporal instability of tree growth responses to climate, which poses a major challenge to linearly extrapolating past climate and future growth dynamics using tree-ring data. Space-for-time substitution (SFTS) is a potential solution to this problem that is widely used in the dendrochronology field to project past or future temporal growth response trajectories from contemporary spatial patterns. However, the projected accuracy of the SFTS in the climate effects on tree growth remains uncertain.
View Article and Find Full Text PDFKnowing more precisely the cambial phenology and wood formation dynamics of trees can lead to a better understanding on how trees react to short-term changes in environmental conditions. Such an understanding could also shed light on the physiological foundation of climate-growth interactions at a regional scale. Although it has been documented that temperature is an important factor determining the cambial phenology in cold and humid climates, there is less agreement on the driver(s) that trigger the onset and end of wood formation in cold and arid climates.
View Article and Find Full Text PDF