Publications by authors named "Shoubridge C"

Introduction: Integrating health and social care to address unmet social needs is an emerging priority for health systems worldwide. Screening and referral interventions for unmet social needs, also known as Health Navigator (HN) interventions, in healthcare settings have shown mixed but promising results, mostly due to a large variability in intervention design and outcomes assessed. Most HN interventions are implemented in primary care, despite evidence that disadvantaged populations face substantial barriers to accessing such care, and these interventions are limited in Australia.

View Article and Find Full Text PDF

In Brief: Aging in men is associated with diminished sperm quality and a higher incidence of altered fetal development and miscarriage in resultant pregnancies. This study in mice identifies a therapeutic compound that, when administered to aged males, improves sperm quality, subsequent embryo development and post-natal offspring health.

Abstract: Aging in men is associated with diminished sperm quality and a higher incidence of altered fetal development and miscarriage in resultant pregnancies.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores pre-mRNA splicing, its critical role in neurodevelopment, and how mutations in spliceosome-related genes U2AF2 and PRPF19 contribute to neurodevelopmental disorders (NDDs).
  • - Researchers found multiple pathogenic variants in U2AF2 and PRPF19 across unrelated individuals, with functional analysis showing that specific U2AF2 variants disrupted normal splicing and neuritogenesis in human neurons.
  • - Additionally, investigations in Drosophila models revealed that the loss of function in U2AF2 and PRPF19 caused severe developmental defects and social issues, pointing to a genetic network wherein splicing factors like Rbfox1 play a significant role in brain development and function. *
View Article and Find Full Text PDF

Pathogenic variants in IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause a variety of neurodevelopmental disorders, with intellectual disability as a uniform feature. We report five cases, each with a novel missense variant in the pleckstrin homology (PH) domain of the IQSEC2 protein. Male patients all present with moderate to profound intellectual disability, significant delays or absent language and speech and variable seizures.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic variants in the ARX gene are associated with a range of symptoms, primarily intellectual disability, along with possible severe epilepsy and movement disorders.
  • The study reports on monozygotic female twins with a new ARX variant that affects protein structure, leading to significant developmental delays and seizures.
  • The second twin displayed more severe symptoms, including chorea, suggesting potential differences in X-chromosome inactivation, although this could not be definitively proven.
View Article and Find Full Text PDF

The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders.

View Article and Find Full Text PDF

Children with severe intellectual disability have an increased prevalence of refractory seizures. Steroid treatment may improve seizure outcomes, but the mechanism remains unknown. Here we demonstrate that short term, daily delivery of an exogenous steroid 17β-estradiol (40 ng/g) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract.

View Article and Find Full Text PDF

Objective: To assess the benefits and limitations of whole genome sequencing (WGS) compared to exome sequencing (ES) or multigene panel (MGP) in the molecular diagnosis of developmental and epileptic encephalopathies (DEE).

Methods: We performed WGS of 30 comprehensively phenotyped DEE patient trios that were undiagnosed after first-tier testing, including chromosomal microarray and either research ES (n = 15) or diagnostic MGP (n = 15).

Results: Eight diagnoses were made in the 15 individuals who received prior ES (53%): 3 individuals had complex structural variants; 5 had ES-detectable variants, which now had additional evidence for pathogenicity.

View Article and Find Full Text PDF

The need to interpret the pathogenicity of novel missense variants of unknown significance identified in the homeodomain of X-chromosome aristaless-related homeobox (ARX) gene prompted us to assess the utility of conservation and constraint across these domains in multiple genes compared to conventional in vitro functional analysis. Pathogenic missense variants clustered in the homeodomain of ARX contribute to intellectual disability (ID) and epilepsy, with and without brain malformation in affected males. Here we report novel c.

View Article and Find Full Text PDF

A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8.

View Article and Find Full Text PDF

Clinical presentations of mutations in the gene on the X-chromosome initially implicated to cause non-syndromic intellectual disability (ID) in males have expanded to include early onset seizures in males as well as in females. The molecular pathogenesis is not well understood, nor the mechanisms driving disease expression in heterozygous females. Using a CRISPR/Cas9-edited KO mouse model, we confirm the loss of mRNA expression and lack of Iqsec2 protein within the brain of both founder and progeny mice.

View Article and Find Full Text PDF

Pathogenic variants in the X-chromosome Aristaless-related homeobox (ARX) gene contribute to intellectual disability, epilepsy, and associated comorbidities in affected males. Here, we report a novel splice variant in ARX in a family with three affected individuals. The proband had early onset developmental and epileptic encephalopathy, his brother and mother had severe and mild intellectual disability, respectively.

View Article and Find Full Text PDF

Aristaless-related homeobox (ARX) gene encodes a paired-type homeodomain transcription factor with critical roles in development. Here we identify that ARX protein is phosphorylated. Using mass spectrometry and in vitro kinase assays we identify phosphorylation at serines 37, 67 and 174.

View Article and Find Full Text PDF

The IQSEC2- related disorders represent a spectrum of X-chromosome phenotypes with intellectual disability (ID) as the cardinal feature. Here, we review the increasing number of reported families and isolated cases have been reported with a variety of different pathogenic variants. The spectrum of clinical features is expanding with early-onset seizures as a frequent comorbidity in both affected male and female patients.

View Article and Find Full Text PDF

X-linked lissencephaly with abnormal genitalia is a rare and devastating syndrome. The authors present an infant with a multisystem phenotype where the intestinal manifestations were as life limiting as the central nervous system features. Severe chronic diarrhea resulted in failure to thrive, dehydration, electrolyte derangements, long-term hospitalization, and prompted transition to palliative care.

View Article and Find Full Text PDF

The Aristaless-related homeobox gene (ARX) is indispensable for interneuron development. Patients with ARX polyalanine expansion mutations of the first two tracts (namely PA1 and PA2) suffer from intellectual disability of varying severity, with seizures a frequent comorbidity. The impact of PA1 and PA2 mutations on the brain development is unknown, hindering the search for therapeutic interventions.

View Article and Find Full Text PDF

The Aristaless-related homeobox gene (ARX) is a known intellectual disability (ID) gene that frequently presents with X-linked infantile spasm syndrome as a comorbidity. ID with epilepsy in children is a chronic and devastating disorder that has poor treatment options and disease outcomes. To gain a better understanding of the role that mutations in ARX play in ID and epilepsy, we investigate ARX patient mutations modelled in mice.

View Article and Find Full Text PDF

There is considerable genetic and phenotypic heterogeneity associated with intellectual disability (ID), specific learning disabilities, attention-deficit hyperactivity disorder, autism and epilepsy. The intelligence quotient (IQ) motif and SEC7 domain containing protein 2 gene (IQSEC2) is located on the X-chromosome and harbors mutations that contribute to non-syndromic ID with and without early-onset seizure phenotypes in both sexes. Although IQ and Sec7 domain mutations lead to partial loss of IQSEC2 enzymatic activity, the in vivo pathogenesis resulting from these mutations is not known.

View Article and Find Full Text PDF

We report a family with four girls with moderate to severe intellectual disability and epilepsy. Two girls showed regression in adolescence and died of presumed sudden unexpected death in epilepsy at 16 and 22 years. Whole exome sequencing identified a truncating pathogenic variant in IQSEC2 at NM_001111125.

View Article and Find Full Text PDF

The devastating clinical presentation of X-linked lissencephaly with abnormal genitalia (XLAG) is invariably caused by loss-of-function mutations in the Aristaless-related homeobox (ARX) gene. Mutations in this X-chromosome gene contribute to intellectual disability (ID) with co-morbidities including seizures and movement disorders such as dystonia in affected males. The detection of affected females with mutations in ARX is increasing.

View Article and Find Full Text PDF

Background: Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organisation of the placental transcriptome through a systematic analysis of gene-wise co-expression relationships.

Results: In this study, we performed a comprehensive analysis of human placental co-expression using RNA sequencing and intergrated multiple transcriptome datasets spanning human gestation.

View Article and Find Full Text PDF

The Aristaless-related homeobox (ARX) gene encodes a paired-type homeodomain transcription factor with critical roles in embryonic development. Mutations in ARX give rise to intellectual disability (ID), epilepsy and brain malformation syndromes. To capture the genetics and molecular disruptions that underpin the ARX-associated clinical phenotypes, we undertook a transcriptome wide RNASeq approach to analyse developing (12.

View Article and Find Full Text PDF

The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues.

View Article and Find Full Text PDF

Objective: IQSEC2 is an X-linked gene associated with intellectual disability (ID) and epilepsy. Herein we characterize the epilepsy/epileptic encephalopathy of patients with IQSEC2 pathogenic variants.

Methods: Forty-eight patients with IQSEC2 variants were identified worldwide through Medline search.

View Article and Find Full Text PDF

Polyglutamine (polyGln) expansions in nine human proteins result in neurological diseases and induce the proteins' tendency to form β-rich amyloid fibrils and intracellular deposits. Less well known are at least nine other human diseases caused by polyalanine (polyAla)-expansion mutations in different proteins. The mechanisms of how polyAla aggregates under physiological conditions remain unclear and controversial.

View Article and Find Full Text PDF