Publications by authors named "Shouang Lan"

Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.

View Article and Find Full Text PDF

Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones.

View Article and Find Full Text PDF

Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of -methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols.

View Article and Find Full Text PDF

Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones.

View Article and Find Full Text PDF

Transition-metal-catalysed reactions of cyclic ethynylethylene carbonates have been intensively studied because of their robustness in new bond formation and diversified molecule construction. Known reaction modes usually involve a substitution step occurring at either the propargylic or terminal alkyne positions. Here, we report an unprecedented reaction pattern in which cyclic ethynylethylene carbonates first undergo a rearrangement to release allenal intermediates, which subsequently react with diverse nucleophiles to furnish synthetically useful allylic and propargylic allenols, phosphorus ylides, and cyclopropylidene ketones through an addition process rather than a substitution pathway.

View Article and Find Full Text PDF

Developing innovative dynamic kinetic resolution (DKR) modes and achieving the highly regio- and enantioselective semihydrogenation of unsymmetrical α-diketones are two formidable challenges in the field of contemporary asymmetric (transfer) hydrogenation. In this work, we report the highly regio- and stereoselective asymmetric semi-transfer hydrogenation of unsymmetrical α-diketones through a unique DKR mode, which features the reduction of the carbonyl group distal from the labile stereocenter, while the proximal carbonyl remains untouched. Moreover, the protocol affords a variety of enantioenriched acyclic ketones with α-hydroxy-α'-C(sp)-functional groups, which represent a new product class that has not been furnished in known arts.

View Article and Find Full Text PDF

A unique deoxygenative cyclodimerization of alkynyl 1,2-diketones facilitated by Ti(OPr) is achieved, affording a series of highly functionalized furan products. An unusual C-C bond and C═O bond cleavage of the substrates is observed, and Ti(OPr) plays triplicate roles in the reaction. Furthermore, the products show uncommon fluorescent emission in the solid state, indicating the potential practical applications of this work.

View Article and Find Full Text PDF

An efficient carbene organocatalyzed route to enantioenriched chromenones, bearing one tri- or difluoromethylated stereogenic center in the β position of the carbonyl group, from o-allyloxybenzaldehydes is described. The one-pot transition-metal-free transformation exhibits a broad substrate scope and excellent enantioselectivity.

View Article and Find Full Text PDF