Continuous single tillage has the potential to increase greenhouse gas (GHG) emissions and decrease the accumulation of soil organic carbon (SOC), thus increasing carbon footprints (CFs). However, in a wheat-maize cropping system, limited information was available about the effects of strategic tillage on CFs. Thus, a four-year field experiment was conducted, including continuous rotary tillage (RT), continuous no-till (NT), RT + subsoiling (RS), and NT + subsoiling (NS), to investigate the effects of NS (strategic tillage) on the unit area and unit yield.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
November 2016
Objective To observe the effect of Fuzheng Kang'ai Recipe (FKR) combined ge- fitinib on the proliferation and apoptosis of lung cancer A549 cells , and to study its potential synergistic mechanish with gefitinib. Methods The effects of FKR (0. 211, 0.
View Article and Find Full Text PDFWorld J Biol Chem
March 2010
Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors and members of the nuclear receptor superfamily. Of the three PPARs identified to date (PPARγ, PPARβ/δ, and PPARα), PPARγ has been studied the most, in part because of the availability of PPARγ agonists (also known as PPARγ ligands) and its significant effects on the management of several human diseases including type 2 diabetes, metabolic syndrome, cardiovascular disease and cancers. PPARγ is expressed in many tumors including lung cancer, and its function has been linked to the process of lung cancer development, progression and metastasis.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2010
The matrix glycoprotein, fibronectin, stimulates the proliferation of non-small cell lung carcinoma in vitro through α5β1 integrin receptor-mediated signals. However, the true role of fibronectin and its receptor in lung carcinogenesis in vivo remains unclear. To test this, we generated mouse Lewis lung carcinoma cells stably transfected with short hairpin RNA shRNA targeting the α5 integrin subunit.
View Article and Find Full Text PDFWe previously showed that nicotine stimulates non-small cell lung carcinoma (NSCLC) cell proliferation through nicotinic acetylcholine receptor (nAChR)-mediated signals. Activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) has also been shown to induce NSCLC cell growth. Here, we explore the potential link between nicotine and PPARbeta/delta and report that nicotine increases the expression of PPARbeta/delta protein; this effect was blocked by an alpha7 nAChR antagonist (alpha-bungarotoxin), by alpha7 nAChR short interfering RNA, and by inhibitors of phosphatidylinositol 3-kinase (PI3K; wortmannin and LY294002) and mammalian target of rapamycin (mTOR; rapamycin).
View Article and Find Full Text PDFLung carcinoma remains one of the most common malignant tumors in the world despite recent advancements in the development of new chemotherapeutic agents for its treatment. Therefore, novel approaches for drug target discovery play an important role in the effort to help extend its dismal 5-year survival rate (<15%). Many mechanisms contribute to oncogenic transformation in carcinoma cells in the lung and recent evidence indicates that the overproduction of prostaglandin E(2) (PGE(2)), and the prostag-landin E(2) receptor subtype, EP4, promote the growth and progression of human nonsmall cell lung carcinoma (NSCLC), the most common lung carcinoma.
View Article and Find Full Text PDFCyclooxygenase-2-derived prostaglandin E(2) (PGE(2)) stimulates tumor cell growth and progression. However, the mechanisms by which PGE(2) increases tumor growth remain incompletely understood. In studies performed in non-small cell lung carcinoma (NSCLC) cells, we found that PGE(2) stimulates the expression of integrin-linked kinase (ILK).
View Article and Find Full Text PDFWe and others have shown previously that nicotine, a major component of tobacco, stimulates non-small cell lung carcinoma (NSCLC) proliferation through nicotinic acetylcholine receptor (nAChR)-mediated signals. Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to inhibit NSCLC cell growth, but the exact mechanisms responsible for this effect remain incompletely defined. Herein, we show that nicotine induces NSCLC cell proliferation in part through alpha4 nAChR, prompting us to explore the effects of rosiglitazone, a synthetic PPARgamma ligand, on the expression of this receptor.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Their discovery in the 1990s provided insights into the cellular mechanisms involved in the control of energy homeostasis, the regulation of cell differentiation, proliferation, and apoptosis, and the modulation of important biological and pathological processes related to inflammation and cancer biology, among others. Since then, PPARs have become an exciting target for the development of therapies directed at many disorders including cancer.
View Article and Find Full Text PDFRecent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2007
The mechanisms by which tobacco promotes lung cancer remain incompletely understood. Herein, we report that nicotine, a major component of tobacco, promotes the proliferation of cultured non-small cell lung carcinoma (NSCLC) cells; this effect was most noticeable at 5 days. However, nicotine had no effect on apoptosis of NSCLC cells.
View Article and Find Full Text PDFAnticancer Drugs
March 2007
Peroxisome proliferator-activated receptors are ligand-activated intracellular transcription factors that have been implicated in important biological processes such as inflammation, tissue remodeling and atherosclerosis. Emerging information also implicates peroxisome proliferator-activated receptors in oncogenesis. Peroxisome proliferator-activated receptor gamma, the best studied of the peroxisome proliferator-activated receptors, modulates the proliferation and apoptosis of many cancer cell types, and it is expressed in many human tumors including lung, breast, colon, prostate and bladder.
View Article and Find Full Text PDFWe have previously demonstrated that fibronectin (Fn) stimulates the proliferation of non-small cell lung carcinoma (NSCLC) cell growth through the induction of cyclooxygenase-2 (COX-2) and prostaglandin E2 secretion. Here, we demonstrate that NSCLC cells express mRNA and protein for the prostaglandin E2 receptor EP4 and that Fn enhances its stimulatory effect by inducing the expression of EP4, but not of EP1, EP2, and EP3 receptor subtypes. The effect of Fn on EP4 was inhibited by an antibody against alpha5beta1 integrin and by inhibitors of phosphoinositide 3-kinase (wortmannin) and extracellular signal-regulated kinase (PD98095), but not by inhibitors of protein kinase C (calphostin C), of protein kinase A (H-89), or of mammalian target of rapamycin (rapamycin).
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors gamma (PPARgamma) exert diverse effects on cancer cells. Recent studies showed that rosiglitazone, a synthetic ligand for PPARgamma, inhibits cell growth. However, the exact mechanisms underlying this effect are still being explored, and the relevance of these findings to lung cancer remains unclear.
View Article and Find Full Text PDFThe Akt/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (p70S6K) pathway is considered a central regulator of protein synthesis and of cell proliferation, differentiation, and survival. However, the role of the Akt/mTOR/p70S6K pathway in lung carcinoma remains unknown. We previously showed that fibronectin, a matrix glycoprotein highly expressed in tobacco-related lung disease, stimulates non-small cell lung carcinoma (NSCLC) cell growth and survival.
View Article and Find Full Text PDFCOX-2 has been implicated in the control of human non-small cell lung carcinoma (NSCLC) cell growth. The mechanisms by which COX-2 exerts its mitogenic effects have not been entirely elucidated, but stimulation of prostaglandin E2 production and alterations in the expression of the cyclin-dependent kinase inhibitor p21(WAF-1/CIP1/MDA-6)(p2i) have been suggested. Here, we demonstrate that two COX-2 inhibitors (NS398 and Nimesulide) inhibit proliferation and induce apoptosis in NSCLC cells, and these effects were associated with induction of p21 mRNA and protein expression.
View Article and Find Full Text PDFThe prostaglandin E2 receptor subtype EP4 has been implicated in the growth and progression of human non-small cell lung carcinoma (NSCLC). However, the factors that control its expression have not been entirely elucidated. Our studies show that NSCLC cells express peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) protein and that treatment with a selective PPARbeta/delta agonist (GW501516) increases EP4 mRNA and protein levels.
View Article and Find Full Text PDFTumor cell expression of COX-2 has been implicated in the progression of murine and human lung cancer. Inhibition of COX-2 by nonsteroidal antiinflammatory drugs reduces the risk of cancer development in humans and suppresses tumor growth in animal models. However, the underlying mechanisms for this beneficial effect are not fully understood.
View Article and Find Full Text PDFWe previously showed that fibronectin stimulates the growth of non-small cell lung carcinoma (NSCLC) cells through integrin alpha5beta1-dependent signals. We also demonstrated that peroxisome proliferator-activated receptor (PPAR)gamma ligands inhibit lung carcinoma cell growth. Because alpha5beta1 activation elicits cellular signals linked to cell survival and regulation of cell cycle progression, we studied the effects of PPARgamma ligands on its expression.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2004
Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis.
View Article and Find Full Text PDFAnn N Y Acad Sci
March 2002
There is ample evidence demonstrating that endometriosis is accompanied by inflammatory reactions in the peritoneum, resulting in abnormal levels of a variety of cytokines and chemokines in the peritoneal fluid. Among the immunological parameters that have been shown to be altered in the peritoneal cavity of women with endometriosis, an increase in the number of activated nonadherent macrophages that show reduced surface expression of scavenger receptors has been observed. The cause-and-effect relationship between aberrant peritoneal macrophage activity and endometriosis is still unknown.
View Article and Find Full Text PDF