Motivated by the novel phenomena observed in the layered material SrCu_{2}(BO_{3})_{2}, the Shastry-Sutherland model (SSM) has been extensively studied as the minimal model for SrCu_{2}(BO_{3})_{2}. However, the nature of its quantum phase transition from the plaquette valence-bond solid to antiferromagnetic phase is under fierce debate, posing a challenge to understand the underlying quantum criticality. Via the state-of-the-art tensor network simulations, we study the ground state of the SSM on large-scale size up to 20×20 sites.
View Article and Find Full Text PDFThe square-lattice Hubbard and closely related t-J models are considered as basic paradigms for understanding strong correlation effects and unconventional superconductivity (SC). Recent large-scale density matrix renormalization group simulations on the extended t-J model have identified d-wave SC on the electron-doped side (with the next-nearest-neighbor hopping t_{2}>0) but a dominant charge density wave (CDW) order on the hole-doped side (t_{2}<0), which is inconsistent with the SC of hole-doped cuprate compounds. We re-examine the ground-state phase diagram of the extended t-J model by employing the state-of-the-art density matrix renormalization group calculations with much enhanced bond dimensions, allowing more accurate determination of the ground state.
View Article and Find Full Text PDFFrustrated spin systems have traditionally proven challenging to understand, owing to a scarcity of controlled methods for their analyses. By contrast, under strong magnetic fields, certain aspects of spin systems admit simpler and universal description in terms of hardcore bosons. The bosonic formalism is anchored by the phenomenon of Bose-Einstein condensation (BEC), which has helped explain the behaviors of a wide range of magnetic compounds under applied magnetic fields.
View Article and Find Full Text PDFThe emergence of exotic quantum phenomena in frustrated magnets is rapidly driving the development of quantum many-body physics, raising fundamental questions on the nature of quantum phase transitions. Here we unveil the behaviour of emergent symmetry involving two extraordinarily representative phenomena, i.e.
View Article and Find Full Text PDFThe topological superconducting state is a highly sought-after quantum state hosting topological order and Majorana excitations. In this Letter, we explore the mechanism to realize the topological superconductivity (TSC) in the doped Mott insulators with time-reversal symmetry (TRS). Through large-scale density matrix renormalization group study of an extended triangular-lattice t-J model on the six- and eight-leg cylinders, we identify a d+id-wave chiral TSC with spontaneous TRS breaking, which is characterized by a Chern number C=2 and quasi-long-range superconducting order.
View Article and Find Full Text PDFThe nature of the zero-temperature phase diagram of the spin-1/2J-J Heisenberg model on a square lattice has been debated in the past three decades, and it remains one of the fundamental problems unsettled in the study of quantum many-body theory. By using the state-of-the-art tensor network method, specifically, the finite projected entangled pair state (PEPS) algorithm, to simulate the global phase diagram of the J-J Heisenberg model up to 24×24 sites, we provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid (QSL), whose spin-spin and dimer-dimer correlations both decay with a power law behavior. There also exists a valence-bond solid (VBS) phase in a very narrow region 0.
View Article and Find Full Text PDFThe frustrated magnet α-RuCl constitutes a fascinating quantum material platform that harbors the intriguing Kitaev physics. However, a consensus on its intricate spin interactions and field-induced quantum phases has not been reached yet. Here we exploit multiple state-of-the-art many-body methods and determine the microscopic spin model that quantitatively explains major observations in α-RuCl, including the zigzag order, double-peak specific heat, magnetic anisotropy, and the characteristic M-star dynamical spin structure, etc.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
A spin-[Formula: see text] lattice Heisenberg Kagome antiferromagnet (KAFM) is a prototypical frustrated quantum magnet, which exhibits exotic quantum spin liquids that evade long-range magnetic order due to the interplay between quantum fluctuation and geometric frustration. So far, the main focus has remained on the ground-state properties; however, the theoretical consensus regarding the magnetic excitations is limited. Here, we study the dynamic spin structure factor (DSSF) of the KAFM by means of the density matrix renormalization group.
View Article and Find Full Text PDFTopological states of matter have been widely studied as being driven by an external magnetic field, intrinsic spin-orbital coupling, or magnetic doping. Here, we unveil an interaction-driven spontaneous quantum Hall effect (a Chern insulator) emerging in an extended fermion-Hubbard model on a kagome lattice, based on a state-of-the-art density-matrix renormalization group on cylinder geometry and an exact diagonalization in torus geometry. We first demonstrate that the proposed model exhibits an incompressible liquid phase with doublet degenerate ground states as time-reversal partners.
View Article and Find Full Text PDFThe fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles.
View Article and Find Full Text PDFWe study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J(1) and J(2), which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z(2) spin liquid. We use the density matrix renormalization group approach with explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders with different boundary conditions. With increasing J(2), we find a Néel phase and a plaquette valence-bond (PVB) phase with a finite spin gap.
View Article and Find Full Text PDFA linearized tensor renormalization group algorithm is developed to calculate the thermodynamic properties of low-dimensional quantum lattice models. This new approach employs the infinite time-evolving block decimation technique, and allows for treating directly the transfer-matrix tensor network that makes it more scalable. To illustrate the performance, the thermodynamic quantities of the quantum XY spin chain as well as the Heisenberg antiferromagnet on a honeycomb lattice are calculated by the linearized tensor renormalization group method, showing the pronounced precision and high efficiency.
View Article and Find Full Text PDF