Macroautophagy (hereafter autophagy) is essential for cells to respond to nutrient stress by delivering cytosolic contents to vacuoles for degradation via the formation of a multi-layer vesicle named autophagosome. A set of autophagy-related (ATG) regulators are recruited to the phagophore assembly site for the initiation of phagophore, as well as its expansion and closure and subsequent delivery into the vacuole. However, it remains elusive that how the phagophore assembly is regulated under different stress conditions.
View Article and Find Full Text PDFFor over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance. SA activates these immune responses by reprogramming ∼20% of the transcriptome through NPR1. However, components in the NPR1 signaling hub, which appears as nuclear condensates, and the NPR1 signaling cascade have remained elusive due to difficulties in studying this transcriptional cofactor, whose chromatin association is indirect and likely transient.
View Article and Find Full Text PDFThe development of multicellular organisms requires coordinated changes in gene expression that are often mediated by the interaction between transcription factors (TFs) and their corresponding cis-regulatory elements (CREs). During development and differentiation, the accessibility of CREs is dynamically modulated by the epigenome. How the epigenome, CREs, and TFs together exert control over cell fate commitment remains to be fully understood.
View Article and Find Full Text PDFEthylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response.
View Article and Find Full Text PDFCell polarity is used to guide asymmetric divisions and create morphologically diverse cells. We find that two oppositely oriented cortical polarity domains present during the asymmetric divisions in the Arabidopsis stomatal lineage are reconfigured into polar domains marking ventral (pore-forming) and outward-facing domains of maturing stomatal guard cells. Proteins that define these opposing polarity domains were used as baits in miniTurboID-based proximity labeling.
View Article and Find Full Text PDFAlternative splicing is an important regulatory process in eukaryotes. In plants, the major form of alternative splicing is intron retention. Despite its importance, the global impact of AS on the Arabidopsis proteome has not been investigated.
View Article and Find Full Text PDFTurboID-based proximity labeling coupled to mass spectrometry (PL-MS) has emerged as a powerful tool for mapping protein-protein interactions in both plant and animal systems. Despite advances in sensitivity, PL-MS studies can still suffer from false negatives, especially when dealing with low abundance bait proteins and their transient interactors. Protein-level enrichment for biotinylated proteins is well developed and popular, but direct detection of biotinylated proteins by peptide-level enrichment and the difference in results between direct and indirect detection remain underexplored.
View Article and Find Full Text PDFO-GlcNAcylation is a critical post-translational modification of proteins observed in both plants and animals and plays a key role in growth and development. While considerable knowledge exists about over 3000 substrates in animals, our understanding of this modification in plants remains limited. Unlike animals, plants possess two putative homologs: SECRET AGENT (SEC) and SPINDLY, with SPINDLY also exhibiting O-fucosylation activity.
View Article and Find Full Text PDFFor over 60 years, salicylic acid (SA) has been known as a plant immune signal required for both basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming up to 20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1- signaling cascade remained elusive due to difficulties in studying transcriptional cofactors whose chromatin associations are often indirect and transient.
View Article and Find Full Text PDFOxygen (O), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O sensitivity screen on a genome-wide insertional mutant library of the unicellular alga .
View Article and Find Full Text PDFEthylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key-step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response.
View Article and Find Full Text PDFUnlabelled: BRASSINAZONE RESISTANT 1 (BZR1) is a key transcription factor of the brassinosteroid signaling pathway but also a signaling hub that integrates diverse signals that modulate plant growth. Previous studies have shown that starvation causes BZR1 degradation, but the underlying mechanisms are not understood. Here we performed quantitative proteomic analysis of BZR1 interactome under starvation conditions and identified two BZR1-interacting ubiquitin ligases, BAF1 and UPL3.
View Article and Find Full Text PDFProtein-protein interactions play a crucial role in driving cellular processes and enabling appropriate physiological responses in organisms. The plant hormone ethylene signaling pathway is complex and regulated by the spatiotemporal regulation of its signaling molecules. Constitutive Triple Response 1 (CTR1), a key negative regulator of the pathway, regulates the function of Ethylene-Insensitive 2 (EIN2), a positive regulator of ethylene signaling, at the endoplasmic reticulum (ER) through phosphorylation.
View Article and Find Full Text PDFPlant cell expansion is driven by turgor pressure and regulated by hormones. How plant cells avoid cell wall rupture during hormone-induced cell expansion remains a mystery. Here we show that brassinosteroid (BR), while stimulating cell elongation, promotes the plasma membrane (PM) accumulation of the receptor kinase FERONIA (FER), which monitors cell wall damage and in turn attenuates BR-induced cell elongation to prevent cell rupture.
View Article and Find Full Text PDFThe development of multi-cellular organisms requires coordinated changes in gene expression that are often mediated by the interaction between transcription factors (TFs) and their corresponding cis-regulatory elements (CREs). During development and differentiation, the accessibility of CREs is dynamically modulated by the epigenome. How the epigenome, CREs and TFs together exert control over cell fate commitment remains to be fully understood.
View Article and Find Full Text PDFTelomerase is a ribonucleoprotein enzyme responsible for maintaining the telomeric end of the chromosome. The telomerase enzyme requires two main components to function: the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR), which provides the template for telomeric DNA synthesis. TR is a long non-coding RNA, which forms the basis of a large structural scaffold upon which many accessory proteins can bind and form the complete telomerase holoenzyme.
View Article and Find Full Text PDFProteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level.
View Article and Find Full Text PDFThe recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown.
View Article and Find Full Text PDFElucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes.
View Article and Find Full Text PDFStomata, cellular valves found on the surfaces of aerial plant tissues, present a paradigm for studying cell fate and patterning in plants. A highly conserved core set of related basic helix-loop-helix (bHLH) transcription factors regulates stomatal development across diverse species. We characterized BdFAMA in the temperate grass Brachypodium distachyon and found this late-acting transcription factor was necessary and sufficient for specifying stomatal guard cell fate, and unexpectedly, could also induce the recruitment of subsidiary cells in the absence of its paralogue, BdMUTE.
View Article and Find Full Text PDFHundreds of leucine-rich repeat receptor kinases (LRR-RKs) have evolved to control diverse processes of growth, development and immunity in plants, but the mechanisms that link LRR-RKs to distinct cellular responses are not understood. Here we show that two LRR-RKs, the brassinosteroid hormone receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and the flagellin receptor FLAGELLIN SENSING 2 (FLS2), regulate downstream glycogen synthase kinase 3 (GSK3) and mitogen-activated protein (MAP) kinases, respectively, through phosphocoding of the BRI1-SUPPRESSOR1 (BSU1) phosphatase. BSU1 was previously identified as a component that inactivates GSK3s in the BRI1 pathway.
View Article and Find Full Text PDFAccurate relative quantification is critical in proteomic studies. The incorporation of stable isotope N to plant-expressed proteins is a powerful tool for accurate quantification with a major advantage of reducing preparative and analytical variabilities. However, N labeling quantification has several challenges.
View Article and Find Full Text PDFMetabolic labeling using stable isotopes is widely used for the relative quantification of proteins in proteomic studies. In plants, metabolic labeling using N has great potential, but the associated complexity of data analysis has limited its usage. Here, we present the N stable-isotope labeled protein quantification workflow utilizing open-access web-based software Protein Prospector.
View Article and Find Full Text PDF