Publications by authors named "Shou-Lin Chang"

The baculovirus expression vector system (BEVS) is widely used as a tool for expressing of recombinant proteins in insect cells or larvae. However, the expression level of secretion pathway proteins is often lower than that of cytosolic and nucleus proteins. Thus, we attempted to improve production of secreted proteins by using a secretory alkaline phosphatase-EGFP fusion protein (SEFP)-based bi-cistronic baculovirus vector to identify chaperones that have potential on boosting secreted protein production.

View Article and Find Full Text PDF

Cytosolic Oryza sativa glyceraldehyde-3-phosphate dehydrogenase (OsGAPDH), the enzyme involved in the ubiquitous glycolysis, catalyzes the oxidative phosphorylation of glyceraldehyde-3-phosphate to 1,3-biphosphoglycerate (BPG) using nicotinamide adenine dinucleotide (NAD) as an electron acceptor. We report crystal structures of OsGAPDH in three conditions of NAD-free, NAD-bound and sulfate-soaked forms to discuss the molecular determinants for coenzyme specificity. The structure of OsGAPDH showed a homotetramer form with each monomer comprising three domains-NAD-binding, catalytic and S-loop domains.

View Article and Find Full Text PDF

Host protein synthesis is shut down in the lytic baculovirus expression vector system (BEVS). This also affects host proteins involved in routing secretory proteins through the endoplasmic reticulum (ER)-Golgi system. It has been demonstrated that a secretory alkaline phosphatase-EGFP fusion protein (SEFP) can act as a traceable and sensitive secretory reporter protein in BEVS.

View Article and Find Full Text PDF

The interaction between the synaptic adhesion molecules neuroligins and neurexins is essential for connecting the pre- and post-synaptic neurons, modulating neuronal signal transmission, and facilitating neuronal axogenesis. Here, we describe the simultaneous expression of the extracellular domain of rat neuroligin-1 (NL1) proteins along with the enhanced green fluorescent protein (EGFP) using the bi-cistronic baculovirus expression vector system (bi-BEVS). Recombinant rat NL1 protein, fused with signal sequence derived from human Azurocidin gene (AzSP), was secreted into the culture medium and the optimum harvest time for NL1 protein before the lysis of infected cells was determined through the release of cytosolic EGFP.

View Article and Find Full Text PDF

The regulatory domain (PA3346RS), comprising the receiver and stalk domains, of the response regulator PA3346 requires phosphorylation for activation with magnesium ions as cofactors in order to modulate the downstream protein phosphatase activity for the regulation of swarming motility in Pseudomonas aeruginosa PAO1. Fusion-tagged recombinant PA3346RS of total molecular mass 25.3 kDa has been overexpressed in Escherichia coli, purified using Ni(2+)-NTA and Q-Sepharose ion-exchange columns and crystallized using the hanging-drop vapour-diffusion method.

View Article and Find Full Text PDF

Protein backbone dynamics is often characterized using model-free analysis of three sets of (15)N relaxation data: longitudinal relaxation rate (R1), transverse relaxation rate (R2), and (15)N-{H} NOE values. Since the experimental data is limited, a simplified model-free spectral density function is often used that contains one Lorentzian describing overall rotational correlation but not one describing internal motion. The simplified spectral density function may be also used in estimating the overall rotational correlation time, by making the R2/R1 largely insensitive to internal motions, as well as used as one of the choices in the model selection protocol.

View Article and Find Full Text PDF

Carbonyl (13)C' relaxation is dominated by the contribution from the (13)C' chemical shift anisotropy (CSA). The relaxation rates provide useful and non-redundant structural information in addition to dynamic parameters. It is straightforward to acquire, and offers complimentary structural information to the (15)N relaxation data.

View Article and Find Full Text PDF

Interdomain motions of Ca(2+)-ligated calmodulin were characterized by analyzing the nuclear magnetic resonance (15)N longitudinal relaxation rate R(1), transverse relaxation rate R(2), and steady-state {(1)H}-(15)N NOE of the backbone amide group at three different magnetic field strengths (18.8, 14.1, and 8.

View Article and Find Full Text PDF

The NMR spin-lattice relaxation rate (R1) and the rotating-frame spin-lattice relaxation rate (R1rho) of amide 15N and carbonyl 13C (13C') of the uniformly 13C- and 15N-labeled ubiquitin were measured at different temperatures and field strengths to investigate the temperature dependence of overall rotational diffusion and local backbone motion. Correlation between the order parameter of the N-H vector, SNH2, and that of the carbonyl carbon, S2C', was investigated. The effective S2C' was estimated from the direct fit of the experimental relaxation rates and from the slope of 2R2-R1 vs.

View Article and Find Full Text PDF