Microwave ablation (MWA) is recognized as a novel treatment modality that can kill tumor cells by heating the ions and polar molecules in these cells through high-speed rotation and friction. However, the size and location of the tumor affect the effective ablation range of microwave hyperthermia, resulting in residual tumor tissue and a high recurrence rate. Due to their tunable porous structure and high specific surface area, metal-organic frameworks (MOFs) can serve as microwave sensitizers, promoting microwave energy conversion owing to ion collisions in the porous structure of the MOFs.
View Article and Find Full Text PDFObjective: To establish a nomogram for predicting the pathologic complete response (pCR) in breast cancer (BC) patients after NAC by applying magnetic resonance imaging (MRI) and ultrasound (US).
Methods: A total of 607 LABC women who underwent NAC before surgery between January 2016 and June 2022 were retrospectively enrolled, and then were randomly divided into the training (n = 425) and test set (n = 182) with the ratio of 7:3. MRI and US variables were collected before and after NAC, as well as the clinicopathologic features.
Background: High-grade background parenchymal enhancement (BPE), including moderate and marked, poses a considerable challenge for the diagnosis of breast disease due to its tendency to increase the rate of false positives and false negatives. The purpose of our study was to explore whether the Kaiser score can be used for more accurate assessment of benign and malignant lesions in high-grade BPE compared with the Breast Imaging Reporting and Data System (BI-RADS).
Methods: A retrospective review was conducted on consecutive breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) scans from 2 medical centers.
In recent years, branched or star-shaped Au nanostructures composed of core and protruding arms have attracted much attention due to their unique optical properties and morphology. As the clinically adapted nanoagent, prussian blue (PB) has recently gained widespread attention in cancer theranostics with potential applications in magnetic resonance (MR) imaging. In this article, we propose a hybrid star gold nanostructure(Au-star@PB)as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI)/ photoacoustic imaging(PAI) and photothermal therapy (PTT) of tumors.
View Article and Find Full Text PDFObjective: To construct a combined radiomics model based on pre-treatment ultrasound for predicting of advanced breast cancers sensitive to neoadjuvant chemotherapy (NAC).
Methods: A total of 288 eligible breast cancer patients who underwent NAC before surgery were enrolled in the retrospective study cohort. Radiomics features reflecting the phenotype of the pre-NAC tumors were extracted.
Oxygen (O) plays a critical role during photodynamic therapy (PDT), however, hypoxia is quite common in most solid tumors, which limits the PDT efficacy and promotes the tumor aggression. Here, a safe and multifunctional oxygen-evolving nanoplatform is costructured to overcome this problem. It is composed of a prussian blue (PB) core and chlorin e6 (Ce6) anchored periodic mesoporous organosilica (PMO) shell (denoted as PB@PMO-Ce6).
View Article and Find Full Text PDFHerein, we demonstrate a coating-etching strategy to directly synthesize hollow Prussian blue (PB) nanocubes with well-dispersed Ag nanoparticles (denoted as Ag-HPB). The method is accomplished by introduction of PB precursors, KFe(CN) and Fe into a reaction system containing AgNO and ascorbic acid, in which a series reactions contain formation of Ag nanoparticles, coating of PB on the nanoparticles, and diffusion of Ag into the PB frameworks occur. The strategy for preparation of the hollow structured Ag-HPB is intrinsically simple and does not require pre-preparation of any sacrificial templates or toxic etching agents.
View Article and Find Full Text PDFIn this study, we used resting-state functional magnetic resonance imaging to explore the genetic effects of amyloid precursor protein (APP) or presenilins mutation and apolipoprotein E (APOE) ε4 on the default-mode network (DMN) in cognitively intact young adults (24.1 ± 2.5 years).
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2016
In this work, we design mesoporous silica-coated Prussian blue nanocubes with PEGyltation to construct multifunctional PB@mSiO2-PEG nanocubes. The PB@mSiO2-PEG nanocubes have good biocompatibility, excellent photothermal transformation capacity, in vivo magnetic resonance and photoacoustic imaging ability. After loading antitumor drug doxorubicin (DOX) in the PB@mSiO2-PEG nanocubes, the constructured PB@mSiO2-PEG/DOX nanoplatforms show an excellent pH-responsive drug release character within 48 h, namely, an ultralow cumulative drug release amount of 3.
View Article and Find Full Text PDF