Publications by authors named "Shou-Gang Zhang"

Laser intensity noise is one of the main limiting factors in pulsed vapor cell clocks. To reduce the contribution of the laser intensity noise to detection signal in the pulsed optically pumped atomic clock, a scheme based on the differential Faraday rotation angle is proposed. Theoretically, the Ramsey fringes, the sensitivity of clock frequency to laser intensity fluctuation and the signal to noise ratio for absorption, differential, and Faraday rotation angle methods are calculated and compared.

View Article and Find Full Text PDF

Chirality represents a kind of symmetry breaking characterized by the noncoincidence of an object with its mirror image and has been attracting intense attention in a broad range of scientific areas. The recent realization of spin-orbit coupling in ultracold atomic gases provides a new perspective to study quantum states with chirality. In this Letter, we demonstrate that the combined effects of spin-orbit coupling and interatomic soft-core long-range interaction can induce an exotic supersolid phase in which the chiral symmetry is broken with spontaneous emergence of circulating particle current.

View Article and Find Full Text PDF

In the last decade, considerable advances have been made in the investigation of dipolar quantum gases. Previous theoretical investigations of a rotating binary dipolar Bose-Einstein condensate, where only one component possesses dipole moment, were mainly focused on two special orientations of the dipoles: perpendicular or parallel to the plane of motion. Here we study the ground-state and rotational properties of such a system for an arbitrary orientation of the dipoles.

View Article and Find Full Text PDF

Dipolar Bosonic atoms confined in external potentials open up new avenues for quantum-state manipulation and will contribute to the design and exploration of novel functional materials. Here we investigate the ground-state and rotational properties of a rotating two-component dipolar Bose-Einstein condensate, which consists of both dipolar bosonic atoms with magnetic dipole moments aligned vertically to the condensate and one without dipole moments, confined in concentrically coupled annular traps. For the nonrotational case, it is found that the tunable dipolar interaction can be used to control the location of each component between the inner and outer rings, and to induce the desired ground-state phase.

View Article and Find Full Text PDF