The γ-prolamins are important components of seed storage proteins in wheat and other Triticeae species. Here, the γ-prolamin genes from the diploid Triticeae species were systemically characterized. Most of the γ-prolamins (except 75 K γ-secalins) characterized were defined as γ-gliadin-like γ-prolamins, since they shared same characteristic model structure with γ-gliadins.
View Article and Find Full Text PDFGranule Bound Starch Synthase I (GBSS I) encoded by the waxy gene plays an important role in accumulating amylose during the development of starch granules in barley. In this study, we isolated and characterized waxy alleles of three waxy (GSHO 908, GSHO 1828 and NA 40) and two non-waxy barley accessions (PI 483237 and CIho 15773), estimated the expression patterns of waxy genes via Real-time quantitative PCR (RT-qPCR), investigated promoter activity by analyzing promoter-GUS expression, and examined possible effects of waxy alleles on starch granule morphology in barley accessions by scanning electron microscopy (SEM). A 193-bp insertion in intron 1, a 15-bp insertion in the coding region, and some single nucleotide polymorphic sites were detected in the waxy barley accessions.
View Article and Find Full Text PDFIn this study, we report the expression of HMW-GSs in 87 accessions of tetraploid wheat, the characterization of three inactive and one active HMW glutenin genes, and the functional verification of HMW-GSs by promoter-GUS expression. SDS-PAGE profiles revealed that tetraploid wheat has many different combinations of HMW-GSs and the number of subunits varies from 1 to 4. HMW glutenin genes at the Glu-A1x, Glu-A1y and Glu-B1y loci exhibited different frequencies of inaction while the Glu-B1x allele was expressed in all 87 accessions.
View Article and Find Full Text PDFBackground: High molecular weight glutenin subunits (HMW-GSs), encoded by the genes at Glu-1 loci in wheat and its related species, are significant in the determination of grain processing quality. However, the diversity and variations of HMW-GSs are relatively low in bread wheat. More interests are now focused on wheat wild relatives in Triticeae.
View Article and Find Full Text PDFThe pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana.
View Article and Find Full Text PDFTheor Appl Genet
September 2010
The development and application of molecular methods in oats has been relatively slow compared with other crops. Results from the previous analyses have left many questions concerning species evolutionary relationships unanswered, especially regarding the origins of the B and D genomes, which are only known to be present in polyploid oat species. To investigate the species and genome relationships in genus Avena, among 13 diploid (A and C genomes), we used the second intron of the nuclear gene FLORICAULA/LEAFY (FL int2) in seven tetraploid (AB and AC genomes), and five hexaploid (ACD genome) species.
View Article and Find Full Text PDFMore and more low-molecular-weight glutenin(LMW glutenin) genes were isolated and characterized from hexaploid wheat (Triticum aestivum L.). However, few homologous genes were obtained from its relative species, which limited our understanding of the relationships among them.
View Article and Find Full Text PDFThe compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta.
View Article and Find Full Text PDF