Publications by authors named "Shou-Fei Zhu"

Spin crossover is one of the most important properties of open-shell metal complexes. In organometallic catalytic reactions, catalysts can alter reaction kinetics by spin crossover, i. e.

View Article and Find Full Text PDF

Carbenes, recognized as potent intermediates, enable unique chemical transformations, and organoborons are pivotal in diverse chemical applications. As a hybrid of carbene and the boryl group, α-boryl carbenes are promising intermediates for the construction of organoborons; unfortunately, such carbenes are hard to access and have low structural diversity with their asymmetric transformations largely uncharted. In this research, we utilized boryl cyclopropenes as precursors for the swift synthesis of α-boryl metal carbenes, a powerful category of intermediates for chiral organoboron synthesis.

View Article and Find Full Text PDF

The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp)-H silylation reaction.

View Article and Find Full Text PDF

The construction of quaternary carbon centers via C-C coupling protocols remains challenging. The coupling of tertiary C(sp) with secondary or tertiary C(sp) counterparts has been hindered by pronounced steric clashes and many side reactions. Herein, we have successfully developed a type of bisphosphine ligand iron complex-catalyzed coupling reactions of tertiary alkyl halides with secondary alkyl zinc reagents and efficiently realized the coupling reaction between tertiary C(sp) and secondary C(sp) with high selectivity for the initial instance, which provided an efficient method for the construction of quaternary carbon centers with high steric hindrance.

View Article and Find Full Text PDF

Iron catalysts are ideal transition metal catalysts because of the Earths abundant, cheap, biocompatible features of iron salts. Iron catalysts often have unique open-shell structures that easily undergo spin crossover in chemical transformations, a feature rarely found in noble metal catalysts. Unfortunately, little is known currently about how the open-shell structure and spin crossover affect the reactivity and selectivity of iron catalysts, which makes the development of iron catalysts a low efficient trial-and-error program.

View Article and Find Full Text PDF

Cyclopamine is a teratogenic steroidal alkaloid, which inhibits the Hedgehog (Hh) signaling pathway by targeting the Smoothened (Smo) receptor. Suppression of Hh signaling with synthetic small molecules has been pursued as a therapeutic approach for the treatment of cancer. We report herein the asymmetric synthesis of cyclopamine based on a two-stage relay strategy.

View Article and Find Full Text PDF

Stereoconvergent transformation of E/Z mixtures of olefins to products with a single steric configuration is of great practical importance but hard to achieve. Herein, we report an iron-catalyzed stereoconvergent 1,4-hydrosilylation reactions of E/Z mixtures of readily available conjugated dienes for the synthesis of Z-allylsilanes with high regioselectivity and exclusive stereoselectivity. Mechanistic studies suggest that the reactions most likely proceed through a two-electron redox mechanism.

View Article and Find Full Text PDF

The Wittig reaction, which is one of the most effective methods for synthesizing alkenes from carbonyl compounds, generally gives thermodynamically stable -alkenes, and synthesis of trisubstituted -alkenes from ketones presents notable challenges. Here, we report what we refer to as Wittig/B─H insertion reactions, which innovatively combine a Wittig reaction with carbene insertion into a B─H bond and constitute a promising method for the synthesis of thermodynamically unstable trisubstituted -boryl alkenes. Combined with the easy transformations of boryl group, this methodology provides efficient access to a variety of previously unavailable trisubstituted -alkenes and thus provides a platform for discovery of pharmaceuticals.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have been trying to design better catalysts (like helpers for chemical reactions) using computers, but they haven't been super successful because they haven’t paid attention to important details about how the reactions actually work.
  • A new method called CODER has been created that focuses on these important details, mixing computer help with the knowledge of researchers.
  • Using CODER, they made new Pd catalysts that work really well for making materials used in electronics, and these new catalysts are way more efficient than older ones!
View Article and Find Full Text PDF

Chiral fluorinated reagents provide new opportunities for the discovery of drugs and functional materials because the introduction of a fluorinated group significantly alters a molecule's physicochemical properties. Chiral -difluoroalkyl fragments (R-CF-C*) are key motifs in many drugs. However, the scarcity of synthetic methods and types of chiral -difluoroalkyl reagents limits the applications of these compounds.

View Article and Find Full Text PDF

Hydroalumination of olefins generally gives thermodynamically controlled anti-Markovnikov addition selectivity in literatures. In this paper, a highly Markovnikov hydroalumination of aromatic terminal alkenes was realized to prepare various new benzylaluminum complexes by using the well-defined 2,9-diaryl-1,10-phenanthroline modified iron complex as the catalyst and commercially available DIBAL-H as the aluminum hydride reagent. This is the first ironcatalyzed alkene hydroalumination, and the regioselectivity observed in this study is different from the related reactions reported in the literatures.

View Article and Find Full Text PDF

Herein we report the first method for highly enantioselective Brønsted acid catalyzed Heyns rearrangements. These reactions, catalyzed by a chiral spiro phosphoric acid, afforded synthetically valuable chiral α-aryl-α-aminoketones which cannot be obtained by means of previously reported Heyns rearrangement methods. This method features low catalyst loadings, high yields and high enantioselectivities, making these reactions highly practical.

View Article and Find Full Text PDF

Although research on iron-catalysed reactions has recently achieved significant progress, the activity and selectivity of iron catalysts are generally inferior to those of noble-metal catalysts. The development of new iron-catalysed reactions, especially those in which iron catalysts exhibit superior activity or selectivity to other catalysts, is the key to promote iron catalysis. Herein, we report the first protocol for iron-catalysed hydroalumination of internal alkynes.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces new cobalt (Co) complexes with cyclopropane-based diphosphine ligands that effectively catalyze hydroboration reactions of unsymmetrical internal alkynes with high selectivity.
  • A notable feature of these reactions is their unusual regioselectivity, showing strong cis-β-addition preference for aryl alkyl internal alkynes and cis-α-addition for dialkyl ones, which cannot be achieved with existing methods.
  • Mechanistic investigations suggest that a Co-H species is the active catalyst, and the unique structure of the ligands contributes to the observed regioselectivity, making these reactions valuable for synthesizing specific alkenylborates and alkenes.
View Article and Find Full Text PDF

Herein, we report the development of a method for highly regio-, stereo-, and enantioselective B-H bond insertion reactions of α-silylcarbenes generated from 1-silylcyclopropenes in the presence of a chiral copper(I)/bisoxazoline catalyst for the construction of chiral γ,γ-disubstituted allylic gem-silylboranes, which cannot be prepared by any other known methods. This reaction is the first highly enantioselective carbene insertion reaction of α-silylcarbenes ever to be reported. The method shows general applicability for various 3,3-disubstituted silylcyclopropenes and exclusively affords E-products.

View Article and Find Full Text PDF

Iron-catalyzed organic reactions have been attracting increasing research interest but still have serious limitations on activity, selectivity, functional group tolerance, and stability relative to those of precious metal catalysts. Progress in this area will require two key developments: new ligands that can impart new reactivity to iron catalysts and elucidation of the mechanisms of iron catalysis. Herein, we report the development of novel 2-imino-9-aryl-1,10-phenanthrolinyl iron complexes that catalyze both -Markovnikov hydrosilylation of terminal alkenes and 1,2--Markovnikov hydrosilylation of various conjugated dienes.

View Article and Find Full Text PDF

Transition-metal-catalysed carbene insertion reaction is a straightforward and efficient protocol for the construction of carbon-carbon or carbon-heteroatom bonds. Compared to the intensively studied and well-established "common" carbene insertion reactions, including carbene insertion into C-H, Si-H, N-H, O-H, and S-H bonds, several "uncommon" carbene insertion reactions, including carbene insertion into B-H, Sn-H, Ge-H, P-H, F-H, C-C, and M-M bonds, have been neglected for a long time. However, more and more studies on uncommon carbene insertion reactions have been disclosed recently, and clearly demonstrate the great synthetic potential of these reactions.

View Article and Find Full Text PDF

Organozinc reagents are among the most commonly used organometallic reagents in modern synthetic chemistry, and multifunctionalized organozinc reagents can be synthesized from structurally simple, readily available ones by means of alkyne carbozincation. However, this method suffers from poor tolerance for terminal alkynes, and transformation of the newly introduced organic groups is difficult, which limits its applications. Herein, we report a method for vinylzincation of terminal alkynes catalyzed by newly developed iron catalysts bearing 1,10-phenanthroline-imine ligands.

View Article and Find Full Text PDF

The scarcity of reliable methods for synthesizing chiral gem-diarylmethine borons limits their applications. Herein, we report a method for highly enantioselective dirhodium-catalyzed B-H bond insertion reactions with diaryl diazomethanes as carbene precursors. These reactions afforded chiral gem-diarylmethine borane compounds in high yield (up to 99 % yield), high activity (turnover numbers up to 14 300), high enantioselectivity (up to 99 % ee) and showed unprecedented broad functional group tolerance.

View Article and Find Full Text PDF

A highly enantioselective Si-H bond insertion reaction of α-aryldiazoacetates catalyzed by chiral spiro dirhodium tetraphosphate was developed. Various chiral α-silyl esters were prepared with high yield (up to 92%) and excellent enantioselectivity (up to >99% ee) through this protocol. It is noteworthy that the 2-substituted aryl diazoacetates, which are challenging substrates for other chiral dirhodium catalysts, also exhibited good results in this reaction.

View Article and Find Full Text PDF

A highly enantioselective and diastereoselective nickel-catalyzed desymmetrizing cyclization of 1,6-dienes was developed by using chiral spiro phosphoramidite ligands. The reaction provides a new atom- and step-economical approach to chiral spiro lactones and analogues bearing a quaternary stereocenter.

View Article and Find Full Text PDF

The Nazarov electrocyclization reaction is a convenient, widely used method for construction of cyclopentenones. In the past few decades, catalytic asymmetric versions of the reaction have been extensively studied, but the strategies used to control the position of the double bond limit the substituent pattern of the products and thus the synthetic applications of the reaction. Herein, we report highly enantioselective silicon-directed Nazarov reactions which were cooperatively catalyzed by a Lewis acid and a chiral Brønsted acid.

View Article and Find Full Text PDF

Chiral propargylsilanes and chiral allenylsilanes have emerged as versatile building blocks for organic synthesis. However, efficient methods for preparing these organosilicon compounds are lacking. We herein report a highly enantioselective method for synthesis of chiral propargylsilanes and chiral allenylsilanes from readily available alkynyl sulfonylhydrazones.

View Article and Find Full Text PDF

We have developed a protocol for insertion of alkylidene carbenes into the B-H bonds of amine-borane adducts, enabling, for the first time, the construction of C(sp)-B bonds by means of carbene-insertion reactions. Various acyclic and cyclic alkenyl borane-amine adducts were prepared from readily accessible starting materials in good to high yields and were subsequently subjected to a diverse array of functional group transformations. The unprecedented spiro B-N heterocycles prepared in this study have potential utility as building blocks for the synthesis of pharmaceuticals.

View Article and Find Full Text PDF

Although tremendous effort has been devoted to the development of methods for iron catalysis, few of the catalysts reported to date exhibit clear superiority to other metal catalysts, and the mechanisms of most iron catalysis remain unclear. Herein, we report that iron complexes bearing 2,9-diaryl-1,10-phenanthroline ligands exhibit not only unprecedented catalytic activity but also unusual ligand-controlled divergent regioselectivity in hydrosilylation reactions of various alkynes. The hydrosilylation protocol described herein provides a highly efficient method for preparing useful di- and trisubstituted olefins on a relatively large scale under mild conditions, and its use markedly improved the synthetic efficiency of a number of bioactive compounds.

View Article and Find Full Text PDF