Publications by authors named "Shou-Ching Jaminet"

Transmembrane-4 L-six family member-1 (TM4SF1) is a small cell surface glycoprotein that is highly and selectively expressed on endothelial cell and mesenchymal stem cell surfaces. TM4SF1 regulates cellular functions by forming protein complexes called TMED (TM4SF1-enriched microdomains) that either recruit growth-factor activated proteins and internalize them via microtubules to distribute the recruited molecules intracellularly or support the formation of nanopodia for intercellular interactions extracellularly. Through a genetically manipulated mouse model for global gene knockout, we demonstrate here that TM4SF1 is essential for blood vessel development.

View Article and Find Full Text PDF

Transmembrane-4 L-six family member-1 (TM4SF1) is an atypical tetraspanin that is highly and selectively expressed in proliferating endothelial cells and plays an essential role in blood vessel development. TM4SF1 forms clusters on the cell surface called TMED (TM4SF1-enriched microdomains) and recruits other proteins that internalize along with TM4SF1 via microtubules to intracellular locations including the nucleus. We report here that tumor growth and wound healing are inhibited in -heterozygous mice.

View Article and Find Full Text PDF

Background: The complex host response to sepsis is incompletely understood. The aim of this investigation is to use leukocyte RNA sequencing to characterize biological functions, cellular pathways, and key regulatory molecules driving sepsis pathophysiology.

Methods: This was a prospective, observational study of emergency department patients with sepsis, at an urban, academic, tertiary care center.

View Article and Find Full Text PDF

Tumors induce their heterogeneous vasculature by secreting vascular endothelial growth factor (VEGF)-A. Anti-VEGF/VEGF receptor (VEGFR) drugs treat cancer, but the underlying mechanisms remain unclear. An adenovirus expressing VEGF-A (Ad-VEGF-A) replicates the tumor vasculature in mice without tumor cells.

View Article and Find Full Text PDF

Unlabelled: As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood-brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling.

View Article and Find Full Text PDF

Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies.

View Article and Find Full Text PDF

The Nrf2 (NFE2L2) cell defense pathway protects against oxidative stress and disorders including cancer and neurodegeneration. Although activated modestly by oxidative stress alone, robust activation of the Nrf2 defense mechanism requires the additional presence of co-factors that facilitate electron exchange. Various molecules exhibit this co-factor function, including sulforaphane from cruciferous vegetables.

View Article and Find Full Text PDF

Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADC) represent a promising therapeutic modality for managing cancer. Here, we report a novel humanized ADC that targets the tetraspanin-like protein TM4SF1. TM4SF1 is highly expressed on the plasma membranes of many human cancer cells and also on the endothelial cells lining tumor blood vessels.

View Article and Find Full Text PDF

NFAT transcription factors are key regulators of gene expression in immune cells. In addition, NFAT1-induced genes play diverse roles in mediating the progression of various solid tumors. Here we show that NFAT1 induces the expression of the IL8 gene by binding to its promoter and leading to IL8 secretion.

View Article and Find Full Text PDF

Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane glycoprotein that regulates cell motility and proliferation. TM4SF1 is an attractive cancer target because of its high expression in both tumor cells and on the vascular endothelial cells lining tumor blood vessels. We generated mouse monoclonal antibodies against human TM4SF1 in order to evaluate their therapeutic potential; 13 of the antibodies we generated reacted with extracellular loop-2 (EL2), TM4SF1's larger extracellular, lumen-facing domain.

View Article and Find Full Text PDF

Endothelial colony-forming cells (ECFCs) are endothelial precursors that circulate in peripheral blood. Studies have demonstrated that human ECFCs have robust vasculogenic properties. However, whether ECFCs can exert trophic functions in support of specific stem cells in vivo remains largely unknown.

View Article and Find Full Text PDF

Rationale: Forkhead box-O transcription factors (FoxOs) transduce a wide range of extracellular signals, resulting in changes in cell survival, cell cycle progression, and several cell type-specific responses. FoxO1 is expressed in many cell types, including endothelial cells (ECs). Previous studies have shown that Foxo1 knockout in mice results in embryonic lethality at E11 because of impaired vascular development.

View Article and Find Full Text PDF

Adherent cells in culture maintain a polarized state to support movement and intercellular interactions. Nanopodia are thin, elongated, largely F-actin-negative membrane projections in endothelial and cancer cells that can be visualized through TM4SF1 (Transmembrane-4-L-six-family-1) immunofluorescence staining. TM4SF1 clusters in 100-300 μm diameter TMED (TM4SF1 enriched microdomains) containing 3 to as many as 14 individual TM4SF1 molecules.

View Article and Find Full Text PDF

Brain pericytes play a critical role in blood vessel stability and blood-brain barrier maturation. Despite this, how brain pericytes function in these different capacities is only beginning to be understood. Here we show that the forkhead transcription factor Foxc1 is expressed by brain pericytes during development and is critical for pericyte regulation of vascular development in the fetal brain.

View Article and Find Full Text PDF

Blood-derived endothelial colony-forming cells (ECFCs) have robust vasculogenic potential that can be exploited to bioengineer long-lasting human vascular networks in vivo. However, circulating ECFCs are exceedingly rare in adult peripheral blood. Because the mechanism by which ECFCs are mobilized into circulation is currently unknown, the reliability of peripheral blood as a clinical source of ECFCs remains a concern.

View Article and Find Full Text PDF

We previously demonstrated that the first intron of the human von Willebrand factor (vWF) is required for gene expression in the endothelium of transgenic mice. Based on this finding, we hypothesized that RNA splicing plays a role in mediating vWF expression in the vasculature. To address this question, we used transient transfection assays in human endothelial cells and megakaryocytes with intron-containing and intronless human vWF promoter-luciferase constructs.

View Article and Find Full Text PDF

For decades, autologous ex vivo gene therapy has been postulated as a potential alternative to parenteral administration of recombinant proteins. However, achieving effective cellular engraftment of previously retrieved patient cells is challenging. Recently, our ability to engineer vasculature in vivo has allowed for the introduction of instructions into tissues by genetically modifying the vascular cells that build these blood vessels.

View Article and Find Full Text PDF

Antivascular therapy directed against VEGF or its receptors (VEGFR) has been successful when administered at early stages of tumor vessel growth but is less effective when administered later. Tumor blood vessels are heterogeneous, so vessel subpopulations may differ in their requirements for tumor cell-secreted VEGF and in their susceptibility to anti-VEGF/VEGFR therapy. Human cancers contain several distinct blood vessel types, including mother vessels (MV), glomeruloid microvascular proliferations (GMP), vascular malformations (VM), feeding arteries (FA), and draining veins (DV), all of which can be generated in mice in the absence of tumor cells using expression vectors for VEGF-A(164).

View Article and Find Full Text PDF

Transmembrane-4-L-six-family-1 (TM4SF1) is a tetraspanin-like membrane protein that is highly and selectively expressed by cultured endothelial cells (EC) and, in vivo, by EC lining angiogenic tumor blood vessels. TM4SF1 is necessary for the formation of unusually long (up to a 50 μm), thin (~100-300 nm wide), F-actin-poor EC cell projections that we term 'nanopodia'. Immunostaining of nanopodia at both the light and electron microsopic levels localized TM4SF1 in a regularly spaced, banded pattern, forming TM4FS1-enriched domains.

View Article and Find Full Text PDF