Human umbilical cord blood is a rich source of hematopoietic stem and progenitor cells. CD34+ cells in umbilical cord blood are more primitive than those in peripheral blood or bone marrow, and can proliferate at a high rate and differentiate into multiple cell types. In this protocol, a dependable method is described for the isolation of fetal CD34+ cells from umbilical cord blood and expanding these cells in culture.
View Article and Find Full Text PDFChromodomain helicase DNA-binding protein 4 (CHD4) is an ATPase that alters the phasing of nucleosomes on DNA and has recently been implicated in DNA double-stranded break (DSB) repair. Here, we show that depletion of CHD4 in acute myeloid leukemia (AML) blasts induces a global relaxation of chromatin that renders cells more susceptible to DSB formation, while concurrently impeding their repair. Furthermore, CHD4 depletion renders AML blasts more sensitive both in vitro and in vivo to genotoxic agents used in clinical therapy: daunorubicin (DNR) and cytarabine (ara-C).
View Article and Find Full Text PDFObjective: Daptomycin, a cyclic lipopeptide that exhibits rapid, concentration-dependent bactericidal activity in vitro against a broad spectrum of Gram-positive pathogens, has now, since 2003, been approved in more than 70 countries and regions to treat skin and soft-tissue infections (SSTIs). The purpose of this meta-analysis was to compare the safety and efficacy of daptomycin with other antibiotics, especially with vancomycin which has long been considered the standard therapy for complicated SSTIs.
Design: Meta-analysis of randomised controlled trials (RCTs).
An understanding of the human fetal to adult hemoglobin switch offers the potential to ameliorate β-type globin gene disorders such as sickle cell anemia and β-thalassemia through activation of the fetal γ-globin gene. Chromatin modifying complexes, including MBD2-NuRD and GATA-1/FOG-1/NuRD, play a role in γ-globin gene silencing, and Mi2β (CHD4) is a critical component of NuRD complexes. We observed that knockdown of Mi2β relieves γ-globin gene silencing in β-YAC transgenic murine chemical inducer of dimerization hematopoietic cells and in CD34(+) progenitor-derived human primary adult erythroid cells.
View Article and Find Full Text PDFMethyl cytosine binding domain protein 2 (MBD2) has been shown to bind to and mediate repression of methylated tumor suppressor genes in cancer cells, where repatterning of CpG methylation and associated gene silencing is common. We have investigated the role of MBD2 in breast cancer cell growth and tumor suppressor gene expression. We show that stable short hairpin RNA (shRNA)-mediated knockdown of MBD2 leads to growth suppression of cultured human mammary epithelial cancer lines, SK-BR-3, MDA-MB-231, and MDA-MB-435.
View Article and Find Full Text PDFNucleosome remodeling complexes comprise several large families of chromatin modifiers that integrate multiple epigenetic control signals to play key roles in cell type-specific transcription regulation. We previously isolated a methyl-binding domain protein 2 (MBD2)-containing nucleosome remodeling and deacetylation (NuRD) complex from primary erythroid cells and showed that MBD2 contributes to DNA methylation-dependent embryonic and fetal β-type globin gene silencing during development in vivo. Here we present structural and biophysical details of the coiled-coil interaction between MBD2 and p66α, a critical component of the MBD2-NuRD complex.
View Article and Find Full Text PDFDuring erythroid development, the embryonic ε-globin gene becomes silenced as erythropoiesis shifts from the yolk sac to the fetal liver where γ-globin gene expression predominates. Previous studies have shown that the ε-globin gene is autonomously silenced through promoter proximal cis-acting sequences in adult erythroid cells. We have shown a role for the methylcytosine binding domain protein 2 (MBD2) in the developmental silencing of the avian embryonic ρ-globin and human fetal γ-globin genes.
View Article and Find Full Text PDFThe chicken embryonic beta-type globin gene, rho, is a member of a small group of vertebrate genes whose developmentally regulated expression is mediated by DNA methylation. Previously, we have shown that a methyl cytosine-binding complex binds to the methylated rho-globin gene in vitro. We have now chromatographically purified and characterized this complex from adult chicken primary erythroid cells.
View Article and Find Full Text PDFThe genes of the vertebrate beta-globin locus undergo a switch in expression during erythroid development whereby embryonic/fetal genes of the cluster are sequentially silenced and adult genes are activated. We describe here a role for DNA methylation and MBD2 in the silencing of the human fetal gamma-globin gene. The gamma-globin gene is reactivated upon treatment with the DNA methyltransferase inhibitor 5-azacytidine in the context of a mouse containing the entire human beta-globin locus as a yeast artificial chromosome (betaYAC) transgene.
View Article and Find Full Text PDFThe Krüppel-like factors (KLFs) are a family of Cys2His2 zinc-finger DNA binding proteins with homology to Drosophila Krüppel. KLFs can bind to CACCC elements, which are important in controlling developmental programs. The CACCC promoter element is critical for the developmental regulation of the human gamma-globin gene.
View Article and Find Full Text PDFThe human major histocompatibility complex (MHC) class Ib gene, HLA-E, codes for the major ligand of the inhibitory receptor NK-G-2A, which is present on most natural killer (NK) cells and some CD8(+) cytotoxic T lymphocytes. We have previously shown that gamma interferon (IFN-gamma) induction of HLA-E gene transcription is mediated through a distinct IFN-gamma-responsive element, the IFN response region (IRR), in all cell types studied. We have now identified and characterized a cell type-restricted enhancer of IFN-gamma-mediated induction of HLA-E gene transcription, designated the upstream interferon response region (UIRR), which is located immediately upstream of the IRR.
View Article and Find Full Text PDFThe methylation pattern of a 248-base pair proximal transcribed region (rho248) of the avian embryonic rho-globin gene was found to correlate inversely with stage-specific expression in avian erythroid cells. In vitro methylation of the rho248 segment alone (in the absence of promoter methylation) resulted in a 5-fold inhibition of transcription in a transient transfection assay in primary erythroid cells in which the transfected gene is packaged into nucleosomal chromatin. This effect was observed if the rho248 segment was positioned adjacent to the promoter but not when it was located 2.
View Article and Find Full Text PDF