Pickering emulsions have attracted increasing attention from multiple fields, including food, cosmetics, healthcare, pharmaceutical, and agriculture. Their stability relies on the presence of colloidal particles instead of surfactant at the droplet interface, providing steric stabilization. Here, we demonstrate the microscopic attachment and detachment of particles with tunable contact angle at the interface underlying the Pickering emulsion stability.
View Article and Find Full Text PDFDouble emulsions hold great potential for various applications due to their compartmentalized internal structures. However, achieving their long-term physical stability remains a challenging task. Here, we present a simple one-step method for producing stable oil-in-water-in-oil (O/W/O) double emulsions using biocompatible gliadin/ethyl cellulose complex particles as the sole stabilizer.
View Article and Find Full Text PDFOxidative stress caused by environmental exposures results in numerous skin diseases. Phloretin (PHL) is often used to relieve various skin symptoms, however, precipitation or crystallization of PHL in aqueous systems limits its ability to diffuse through the stratum corneum, making it difficult to exert effect at the target. To address this challenge, we herein report a method for the generation of core-shell nanostructure (G-LSS) via the growth of sericin crust around gliadin nanoparticle as a topical nanocarrier of PHL to improve its cutaneous bioavailability.
View Article and Find Full Text PDFProtein-based Pickering emulsions have received considerable attention as nutraceutical vehicles. However, the oral bioavailability of nutraceuticals encapsulated in Pickering emulsions was not well established. In this work, a simulated gastrointestinal tract/Caco-2 cell culture model was applied to investigate the oral bioavailability of quercetin encapsulated in zein-based Pickering emulsions with quercetin in zein particles as the control.
View Article and Find Full Text PDFPorous materials derived from natural and biodegradable polymers have received growing interest. We demonstrate here an attractive method for the preparation of protein-based porous materials using emulsions stabilized by gliadin-chitosan hybrid particles (GCHPs) as the template, with the addition of gelatin and kosmotropic ions to improve the mechanical strength. The microstructure, mechanical properties, cytotoxicity, and fluid absorption behavior of porous materials were systematically investigated.
View Article and Find Full Text PDFPickering high internal phase emulsions (HIPEs) are normally highly concentrated emulsions stabilized by colloidal particles with a minimum internal phase volume fraction of 0.74. They have received considerable attention in many fields, including pharmaceuticals, tissue engineering, foods, and personal care products.
View Article and Find Full Text PDFLactobacillus reuteri FN041 is a secretory IgA-targeted Lactobacillus strain from human breast milk that has probiotic potential. The aim of this study was to test whether FN041 can alleviate dyslipidaemia and mucosal-barrier damage caused by a high-fat diet (HFD) and whether it can affect diurnal variation of the intestinal microbiota. C57BL/6 mice were fed either a normal chow diet or high-fat diet (HFD) for 7 weeks and were treated with either PBS as a control or L.
View Article and Find Full Text PDFPickering high internal-phase emulsions (HIPEs) and porous materials derived from the Pickering HIPEs have received increased attention in various research fields. Nevertheless, nondegradable inorganic and synthetic stabilizers present toxicity risks, thus greatly limiting their wider applications. In this work, we successfully developed nontoxic porous materials through the Pickering HIPE-templating process without chemical reactions.
View Article and Find Full Text PDFIn this work, zein/chitosan nanoparticles (ZCPs-Q) were developed for encapsulating quercetin to overcome its lower water solubility and instability, and to concomitantly enhance its cellular uptake and intracellular antioxidant activity. This strategy enhanced quercetin solubility 753.6 and 9.
View Article and Find Full Text PDFDiets containing partially hydrogenated oils (PHOs) expose the human body to trans fatty acids, thus endangering cardiovascular health. Pickering high internal phase emulsions (HIPEs) is a promising alternative of PHOs. This work attempted to construct stable Pickering HIPEs by engineering interface architecture through manipulating the interfacial, self-assembly, and packing behavior of zein particles using the interaction between protein and pectin.
View Article and Find Full Text PDFThis work attempted to engineer emulsions' interface using the special affinity between proline-rich gliadin and proanthocyanidins (PA), to develop surfactant-free antioxidant Pickering emulsions with digestive-resistant properties. This binding interaction between gliadin and PA benefited the interfacial adsorption of the particles to corn oil droplets. Pickering droplets as building units assembled into an interconnected three-dimensional network structure, giving the emulsions viscoelasticity and ultrastability.
View Article and Find Full Text PDFBiodegradable food packaging is sustainable and has a great application prospect. PLA is a promising alternative for petroleum-derived polymers. However, PLA packaging suffers from poor barrier properties compared with petroleum-derived ones.
View Article and Find Full Text PDFThis research presents a green procedure to prepare oil in water (O/W) emulsion from acid soluble soy protein (ASSP) and soy soluble polysaccharide (SSPS), a long-term stable nanoscale system for delivering the lipophilic components. The emulsion technique involved the preparation complexion using ASSP and SSPS by electrostatic and hydrophobic interactions as well as high pressure homogenization. The average diameter of the droplet of emulsions (fresh and heated) is 263±2nm.
View Article and Find Full Text PDFWe report for the first time the usage of mono-dispersed gliadin/chitosan hybrid particles as a particulate emulsifier for Pickering high internal phase emulsions (HIPEs) development. The hybrid particles with partial wettability were fabricated at pH 5.0 using a facile anti-solvent route.
View Article and Find Full Text PDFHerein, we report novel high internal phase emulsions and transparent oleogels that exhibit a hierarchical configuration by manipulating the spatial assembly of a natural small molecular-weight quillaja saponin for color performance. Quillaja saponin (QS) is a natural triterpenoid bidesmosidic from the soapbark tree (Quillaja saponaria Molina). Fairly monodispersed QS-coated nanodroplets (∼154 nm) were prepared using the ultrasonic emulsification strategy, and then used as block stabilizers for the fabrication of stable oil-in-water high internal phase emulsions (HIPEs, ϕ = 0.
View Article and Find Full Text PDFA current challenge in the area of food emulsion is the design of microstructure that provides controlled release of volatile compounds during storage and consumption. Here, a new strategy addressed this problem at the fundamental level by describing the design of organogel-based emulsion from the self-assembly of β-sitosterol and γ-oryzanol that are capable of tuning volatile release. The results showed that the release rate (v), maximum headspace concentrations (C) and partition coefficients (k) above structured emulsions were significantly lower than unstructured emulsions and controlled release doing undergo tunable though the self-assembled interface and core fine microstructure from internal phase under dynamic and static condition.
View Article and Find Full Text PDFAlgae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin.
View Article and Find Full Text PDFHerein, we reported a facile method to fabricate ultra-stable, surfactant- and antimicrobial-free Pickering emulsions by designing and modulating emulsions' interfaces via zein/chitosan colloid particles (ZCCPs). Highly charged ZCCPs with neutral wettability were produced by a facile anti-solvent procedure. The ZCCPs were shown to be effective Pickering emulsifiers because the emulsions formed were highly resistant to coalescence over a 9-month storage period.
View Article and Find Full Text PDFFood-grade colloidal particles and complexes, which are formed via modulation of the noncovalent interactions between macromolecules and natural small molecules, can be developed as novel functional ingredients in a safe and sustainable way. For this study was prepared a novel zein/tannic acid (TA) complex colloidal particle (ZTP) based on the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution by using a simple antisolvent approach. Pickering emulsion gels with high oil volume fraction (φ(oil) > 50%) were successfully fabricated via one-step homogenization.
View Article and Find Full Text PDFThe preparation of soy β-conglycinin-dextran nanogels (∼90 nm) went through two stages, which are safe, facile, and green. First, amphiphilic graft copolymers were formed by dextran covalently attaching to β-conglycinin via Maillard dry-heating reaction. Second, the synthesized conjugates were heated above the denaturation temperature at the isoelectric point (pH4.
View Article and Find Full Text PDFSoy germ rich in isoflavones has attracted much attention for health-promoting characteristics. An effective approach via Monascus aged vinegar soaking was adopted to enhance the aglycone amount. The profiles and interconversion of soy germ isoflavones via Monascus aged vinegar soaking were investigated, and the distribution in vinegars were also explored.
View Article and Find Full Text PDFLipid peroxidation in oil-in-water (o/w) emulsions leads to rancidity and carcinogen formation. This work attempted to protect lipid droplets of emulsions from peroxidation via manipulation of the emulsions' interface framework using dual-function zein/CH complex particles (ZCPs). ZCP with intermediate wettability was fabricated via a simple antisolvent approach.
View Article and Find Full Text PDFTo improve the gel strength, we attempt to introduce the microcomposite concept into the food gel system. A stable positively charged chitin microfibers (CMFs) suspension was fabricated by a facile microfluidizer approach without changing its chemical structure. The obtained CMFs bearing width of about 0.
View Article and Find Full Text PDFSoy lipophilic protein nanoparticles (LPP), which present a novel delivery vehicle for conjugated linoleic acid (CLA), were fabricated by ultrasonication of the soy lipophilic protein (LP), which exhibits unique characteristics including a high loading capacity, oxidation protection and a sustained releasing profile in vitro for CLA. The CLA-loaded LPP exhibited a mean diameter of 170 ± 0.63 nm and a loading capacity of 26.
View Article and Find Full Text PDFThis paper describes the successful preparation of a protein-based Pickering emulsion, with superior stability against both coalesence and creaming, through a novel strategy of facilitating the formation of protein particles and small molecular weight surfactant complexes; these complexes are able to overcome multiple challenges including limited solubility, poor diffusive mobility, and low interfacial loading. Soluble complexes of water-insoluble corn protein, zein colloidal particles, and surfactant sodium stearate (SS) were fabricated by simple ultrasonication. Gel trapping technology combined with SEM was applied to characterize the adsorbed particles monolayer at the oil-water interface; results revealed an enhanced adsorption and targeted accumulation of zein particles at the interface with the increase of SS concentration.
View Article and Find Full Text PDF