Polyurethane and its composites play an important role in innovative packing materials including anticounterfeiting and ultraviolet protection, however, they are mainly derived from petroleum resources that are not sustainable. In this study, a 100% biobased thermoplastic polyurethane (Bio-TPU) was synthesized using biobased poly(trimethylene ether) glycol, pentamethylene disocyanate, and 1,4-butanediol. Subsequently, biobased tannic acid (TA) was employed to prepare biobased composites.
View Article and Find Full Text PDFNickel-catalyzed asymmetric intramolecular addition of aryl halides to α-ketoamides has been achieved to afford chiral 3-substituted-3-hydroxy-2-oxindoles in excellent yields and high enantioselectivities (up to 99 % yield and 98 % ee), which provides efficient access to valuable molecules containing 3-hydroxy-2-oxindole core. The gram-scale reaction proved the potential utility of the methodology.
View Article and Find Full Text PDFThe thermodynamic incompatibility between the soft and hard segments of thermoplastic polyurethane (TPU) results in a microphase-separated behavior and excellent mechanical properties. However, the effect of the chain extender on the degree of microphase separation (DMS) and the resultant mechanical properties of TPU have not been well studied because of the complex interactions between the soft and hard segments. Herein, hydroxyl-terminated polybutadiene-based TPUs(HTPB-TPUs) without hydrogen bonding between the soft and hard segments are synthesized using hydroxyl-terminated polybutadiene, toluene diisocyanate, and four different chain extenders, and the effect of the chain extender structure on DMS is analyzed experimentally using a combination of analytical techniques.
View Article and Find Full Text PDFTuberculosis (TB), a respiratory disease caused by (Mtb), is a significant cause of mortality worldwide. The lung, a breeding ground for Mtb, was once thought to be a sterile environment, but has now been found to host its own profile of microbes. These microbes are critical in the development of the host immune system and can produce metabolites that aid in host defense against various pathogens.
View Article and Find Full Text PDFAs a bio-based degradable plastic, polylactic acid (PLA) is highly commercialized, but its inherent brittleness limits its widespread use. In-situ polymerization techniques are effective in improving the toughness of PLA. However, the enhancement of the toughening effect in polyurethanes (PUs) through in-situ self-crosslinking still requires improvement and heavily relies on petroleum-derived feedstocks in certain approaches.
View Article and Find Full Text PDFBackground: Intracerebral hemorrhage (ICH), a subtype of devastating stroke, carries high morbidity and mortality worldwide. CircRNA AFF2 (circAFF2) was significantly increased in ICH patients, but the underlying mechanism of circAFF2 is unknown.
Methods: Hemin was employed to treat neuronal cells to mimic ICH in vitro.
Background: Monitoring the risk of intussusception after the introduction of rotavirus vaccines is recommended by the World Health Organization (WHO). Although the validity of intussusception monitoring using electronic health records (EHRs) has been confirmed previously, no similar studies have been conducted in China. We aimed to verify the diagnosis and determine an algorithm with the best performance for identification of intussusception using Chinese EHR databases.
View Article and Find Full Text PDFRationale: Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are commonly used in the treatment of advanced non-small cell lung cancer. However, patients will inevitably develop resistance to EGFR-TKIs in the long-term treatment process. In this paper, we report a case of small cell lung cancer transformation after EGFR-TKIs treatment in lung adenocarcinoma.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2022
Rubber composites make an important contribution to eliminating vibration and noise owing to their unique viscoelasticity. However, it is important to find alternative bio-based products with high damping properties owing to the shortage of petrochemical resources and poor performance. The ability to self-heal is an additional characteristic that is highly desirable because it can further increase the service life and safety of such products.
View Article and Find Full Text PDFInspired by crystal structures, we designed and achieved a catalyst-free Michael reaction for the preparation of an N1-alkyl pyrazole in a high yield (>90%) with excellent regioselectivity (N1/N2 > 99.9:1). The scope of this protocol has been extended to accomplish the first general regioselective N1-alkylation of 1-pyrazoles to give di-, tri-, and tetra-substituted pyrazoles in a single step.
View Article and Find Full Text PDFThe operation of mechanical equipment inevitably generates vibrations and noise, which are harmful to not only the human body but also to the equipment in use. Damping materials, which can convert mechanical energy into thermal energy, possess excellent damping properties in the glass transition region and can alleviate the problems caused by vibration and noise. However, these materials mainly rely on petroleum-based resources, and their glass transition temperatures () are lower than room temperature.
View Article and Find Full Text PDFVibration and noise are ubiquitous in social life, which severely damage machinery and adversely affect human health. Thus, the development of materials with high-damping performance is of great importance. Rubbers are typically used as damping materials because of their unique viscoelasticity.
View Article and Find Full Text PDFPetroleum-based polymer materials heavily rely on nonrenewable petrochemical resources, and damping materials are an important category of them. As far as green chemistry, recycling, and damping materials are concerned, there is an urgent need for renewable and recyclable biobased materials with high damping performance. Thus, this study designs and synthesizes a series of polylactic acid-based thermoplastic polyurethanes (PLA-based TPUs) composed of modified polylactic acid polyols, 4,4'-diphenylmethane diisocyanate, and 1,4-butanediol.
View Article and Find Full Text PDFXuanwei County in Southwest China shows the highest incidence and mortality rate of lung cancer in China. Although studies have reported distinct clinical characteristics of patients from Xuanwei, the molecular features of these patients with non-small cell lung cancer (NSCLC) remain unclear. Here, we comprehensively characterised such cases using next-generation sequencing (NGS).
View Article and Find Full Text PDFLung cancer is the most prevalent cancer worldwide and non‑small cell lung cancer (NSCLC) is the most common subtype and accounts for 75% of all lung cancer cases. Although programmed death‑1/programmed death‑ligand‑1 (PD‑1/PD‑L1) blockade has shown good results in the clinic, numerous NSCLC patients still fail to respond to this therapy. In the current study, formalin‑fixed, paraffin‑embedded tumor and matched blood samples from 1,984 Chinese NSCLS patients were collected for detection of genomic alterations including single nucleotide variations, short and long insertions/deletions, copy number variations and gene rearrangements.
View Article and Find Full Text PDFA series of Fe doped LaMnO catalysts were prepared to control the production of byproducts such as O, NO, and CO, during the degradation of volatile organic compounds with a non-thermal plasma. Eliminating these potentially toxic byproducts will make non-thermal plasma technologies applicable for a wider range of commercial applications. The modified LaMnO catalysts are combined in NTP-catalysis reactor with optimal configuration.
View Article and Find Full Text PDF