Background: Calcium phosphates including β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAp) have been widely used for bone regeneration application because of their high osteoconductive activities. In addition, various kinds of inorganic ions enhance differentiation, proliferation, and mineralization of osteoblasts. However, information about the effects of silver-doped β-TCP [β-TCP (Ag)] and HAp [HAp (Ag)] particles on osteogenic differentiation is not available yet.
View Article and Find Full Text PDFCalcium carbonate-based bone substitutes derived from natural coral exoskeleton (aragonite) are resorbed and remodeled faster than calcium phosphate-based substitutes. However, coral species with structures appropriate for use as bone substitutes are very limited. Therefore, it is important to evaluate potential of artificial calcium carbonate ceramics as a bone substitute.
View Article and Find Full Text PDFIn addition to calcium phosphate-based ceramics, glass-based materials have been utilized as bone substitutes, and silicate in these materials has been suggested to contribute to their ability to stimulate bone repair. In this study, a silicate-containing α-tricalcium phosphate (α-TCP) ceramic was prepared using a wet chemical process. Porous granules composed of silicate-containing α-TCP, for which the starting composition had a molar ratio of 0.
View Article and Find Full Text PDF