CYP2D6 and CYP3A4, which are members of the cytochrome P450 superfamily of metabolic enzymes, play major roles in the metabolism of commonly available drugs. CYP3A4 is involved in the metabolism of 50% of drugs on the market, whereas CYP2D6 is involved in the metabolism of 25% of them. CYP2D6 exhibits a high degree of polymorphic nature in the human population, causing individual differences in CYP2D6 expression and enzymatic activity.
View Article and Find Full Text PDFCytochrome P450 enzymes (CYP) function in drug metabolism in the liver. To evaluate numerous drug candidates, a high-content screening (HCS) system with hepatocyte-like cells (HLCs) that can replace adult human hepatocytes is required. Human hepatocellular carcinoma HepaRG is the only cell line capable of providing HLCs with high CYP3A4 expression comparable to that in adult hepatocytes after cell differentiation.
View Article and Find Full Text PDFThe fields of drug discovery and regenerative medicine require large numbers of adult human primary hepatocytes. For this purpose, it is desirable to use hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells (PSCs). Premature hepatoblast-like cells (HB-LCs) differentiated from PSCs provide an intermediate source and steady supply of newly mature HLCs.
View Article and Find Full Text PDF