Publications by authors named "Shota Katayama"

Article Synopsis
  • In fuel cells that use a special kind of water-based technology, tiny platinum particles need water inside their small holes to work well.
  • Researchers used advanced computer simulations to study how water collects in these tiny spaces, since they can't yet see it in real life.
  • The study found that when there's low humidity, the way water forms a thin layer matters, but when it's really humid, water collects more in bigger holes, helping the platinum do its job better.
View Article and Find Full Text PDF

Genome Editing is widely used in biomedical research and medicine. Zinc finger nucleases (ZFNs) are smaller in size than transcription activator-like effector (TALE) nucleases (TALENs) and CRISPR-Cas9. Therefore, ZFN-encoding DNAs can be easily packaged into a viral vector with limited cargo space, such as adeno-associated virus (AAV) vectors, for in vivo and clinical applications.

View Article and Find Full Text PDF

The elucidation of the properties of malignant glioma and development of therapeutic methods require glioblastoma-multiforme mice model with characteristics such as invasiveness, multinuclearity, and ability for mitosis. A previous study has shown that overexpression of active HRas (HRasL61) in neural stem/progenitor cells (NSCs) isolated from p53 knockout (KO) mice could induce glioma-initiating cells (GICs). The orthotopically transplantation of 10 cells into the forebrain of immunodeficient mice resulted in the development of glioblastoma multiforme-like malignant brain tumors.

View Article and Find Full Text PDF

Unlabelled: Luminal breast cancer has the highest bone metastasis frequency among all breast cancer subtypes; however, its metastatic mechanism has not been elucidated because of a lack of appropriate models. We have previously developed useful bone metastatic cell lines of luminal breast cancer using MCF7 cells. In this study, we characterized bone metastatic MCF7-BM cell lines and identified c-Jun as a novel bone metastasis marker of luminal breast cancer.

View Article and Find Full Text PDF

The homeobox family genes are often dysregulated in various cancer types. Particularly HOXB7 amplification and overexpression correlate with poor prognosis in various cancer such as gastric, pancreatic, and lung cancers. Moreover, HOXB7 is known to contribute to cancer progression by promoting epithelial to mesenchymal transition, anticancer drug resistance, and angiogenesis.

View Article and Find Full Text PDF

Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. One recently developed technique, living diatom silica immobilization (LiDSI), has made it possible to immobilize proteins, including multimeric and redox enzymes, via a cellular excretion system onto the silica frustule of the marine diatom . However, the number of application examples so far is limited, and the type of proteins appropriate for the technique is still enigmatic.

View Article and Find Full Text PDF

Programmable DNA methylation is required for understanding of transcriptional regulation and elucidating gene functions. We previously reported that MMEJ-based promoter replacement enabled targeted DNA methylation in human cells. ssDNA-mediated knock-in has recently been reported to completely reduce random integrations.

View Article and Find Full Text PDF

Targeted DNA methylation is important for understanding transcriptional modulation and epigenetic diseases. Although CRISPR-Cas9 has potential for this purpose, it has not yet been successfully used to efficiently introduce DNA methylation and induce epigenetic diseases. We herein developed a new system that enables the replacement of an unmethylated promoter with a methylated promoter through microhomology-mediated end joining-based knock-in.

View Article and Find Full Text PDF

Cancer stem cell (CSC) is considered as a cause of cancer recurrence and metastasis. Simultaneously CSCs are responsible for the heterogeneous population in tumor tissues due to their differentiation potential. However, the characterizations of CSCs are still not enough and cancer stem cell lines widely available is desired to be established for the advancement of cancer research.

View Article and Find Full Text PDF

Supplementing wildtype copies of functionally defective genes with adeno-associated virus (AAV) is a strategy being explored clinically for various retinal dystrophies. However, the low cargo limit of this vector allows its use in only a fraction of patients with mutations in relatively small pathogenic genes. To overcome this issue, we developed a single AAV platform that allows local replacement of a mutated sequence with its wildtype counterpart, based on combined CRISPR-Cas9 and micro-homology-mediated end-joining (MMEJ).

View Article and Find Full Text PDF

Gene knockout is important for understanding gene function and genetic disorders. The CRISPR/Cas9 system has great potential to achieve this purpose. However, we cannot distinguish visually whether a gene is knocked out and in how many cells it is knocked out among a population of cells.

View Article and Find Full Text PDF

Purpose: To assess the therapeutic potential of endothelin-converting enzyme-like 1 (Ecel1) in a mouse model of optic nerve crush.

Methods: Ecel1 expression was evaluated with real time quantitative (qRT)-PCR, Western blotting, and immunohistochemistry in mouse retinas after optic nerve crush. Vinblastine administration to the optic nerve and the intravitreal injection of N-methyl-d-aspartate (NMDA) were used to assess Ecel1 gene expression.

View Article and Find Full Text PDF

Daylight-driven photocatalysts have attracted much attention in the context of "green" technology. Although various active materials have been reported and their applications are rapidly increasing, many are discovered after enormous experimental efforts. Herein the discovery of a novel oxide photocatalyst, β-SnMoO, is demonstrated via a rational search of 3483 known and hypothetical compounds with various compositions and structures over the whole range of SnO-O (: Ti, Zr, and Hf ( = 4); V, Nb, and Ta ( = 5); Cr, Mo, and W ( = 6)) pseudobinary systems.

View Article and Find Full Text PDF

The efficiency of pluripotent stem cell differentiation is highly variable, often resulting in heterogeneous populations that contain undifferentiated cells. Here we developed a sensitive, target-specific, and general method for removing undesired cells before transplantation. MicroRNA-302a-5p (miR-302a) is highly and specifically expressed in human pluripotent stem cells and gradually decreases to basal levels during differentiation.

View Article and Find Full Text PDF

In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor.

View Article and Find Full Text PDF

Targeted transcriptional activation of endogenous genes is important for understanding physiological transcriptional networks, synthesizing genetic circuits, and inducing cellular phenotype changes. The CRISPR/Cas9 system has great potential to achieve this purpose, however, it has not yet been successfully used to efficiently activate endogenous genes and induce changes in cellular phenotype. A powerful method for transcriptional activation by using CRISPR/Cas9 was developed.

View Article and Find Full Text PDF

Adenosine deaminases acting on RNA (ADARs) convert adenosine residues to inosine specifically in double-stranded RNAs. In this study, we investigated the function of primary RNA editing enzyme ADAR1 in pluripotent stem cells and found that loss of ADAR1 in human iPS cells promotes caspase3-mediated cell death. However, ADAR1 knockdown (KD) did not alter cell morphology, alkaline phosphatase (AP) staining activities and the expression levels of pluripotent marker genes, indicating that ADAR1 is dispensable for maintenance of pluripotency.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method to isolate specific cell types, like pluripotent stem cell (PSC)-derived populations, using endogenous miRNA activities instead of relying solely on known cell surface antigens.
  • By utilizing synthetic mRNAs encoding fluorescent proteins that respond to miRNAs from target cells, the method can efficiently purify cardiomyocytes and other cell types.
  • This innovative miRNA switch technique proves effective for various cell types, including endothelial cells and insulin-producing cells, providing an alternative isolation strategy when traditional methods are not available.
View Article and Find Full Text PDF

Bovine colostral odorant-binding protein (bcOBP) is a novel protein found in bovine colostrum and belonging to the lipocalin superfamily. Most of them are secretory proteins. We have examined the localisation of bcOBP messenger RNA in several tissues.

View Article and Find Full Text PDF