MMWR Morb Mortal Wkly Rep
February 2022
During the 2019-20 influenza season, influenza-like illness (ILI)* activity first exceeded the national baseline during the week ending November 9, 2019, signaling the earliest start to the influenza season since the 2009 influenza A(H1N1) pandemic. Activity remains elevated as of mid-February 2020. In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months (1).
View Article and Find Full Text PDFThe fifth wave of the H7N9 influenza epidemic in China was distinguished by a sudden increase in human infections, an extended geographic distribution, and the emergence of highly pathogenic avian influenza (HPAI) viruses. Genetically, some H7N9 viruses from the fifth wave have acquired novel amino acid changes at positions involved in mammalian adaptation, antigenicity, and hemagglutinin cleavability. Here, several human low-pathogenic avian influenza (LPAI) and HPAI H7N9 virus isolates from the fifth epidemic wave were assessed for their pathogenicity and transmissibility in mammalian models, as well as their ability to replicate in human airway epithelial cells.
View Article and Find Full Text PDFHuman colorectal cancer (CRC) is one of the better-understood systems for studying the genetics of cancer initiation and progression. To develop a cross-species comparison strategy for identifying CRC causative gene or genomic alterations, we performed array comparative genomic hybridization (aCGH) to investigate copy number abnormalities (CNAs), one of the most prominent lesion types reported for human CRCs, in 10 spontaneously occurring canine CRCs. The results revealed for the first time a strong degree of genetic homology between sporadic canine and human CRCs.
View Article and Find Full Text PDFRho family GTPases promote the survival of certain neuronal populations. However, pro-survival and pro-death signaling pathways regulated downstream of Rho GTPases are largely unknown. Cerebellar granule neurons (CGNs) exposed to Clostridium difficile toxin B (ToxB), a monoglucosyltransferase that specifically inhibits Rho GTPases, die by a mitochondrial apoptotic cascade.
View Article and Find Full Text PDFRho GTPases are key transducers of integrin/extracellular matrix and growth factor signaling. Although integrin-mediated adhesion and trophic support suppress neuronal apoptosis, the role of Rho GTPases in neuronal survival is unclear. Here, we have identified Rac as a critical pro-survival GTPase in cerebellar granule neurons (CGNs) and elucidated a death pathway triggered by its inactivation.
View Article and Find Full Text PDFPrimary cerebellar granule neurons (CGNs) require depolarizing extracellular potassium for their survival. Removal of depolarizing potassium triggers CGN apoptosis that requires induction of Bim, a BH3-only Bcl-2 family member. Bim is classically thought to promote apoptosis by neutralizing pro-survival Bcl-2 proteins.
View Article and Find Full Text PDFGlycogen synthase kinase-3beta (GSK-3beta) is a critical activator of neuronal apoptosis induced by a diverse array of neurotoxic insults. However, the downstream substrates of GSK-3beta that ultimately induce neuronal death are unknown. Here, we show that GSK-3beta phosphorylates and regulates the activity of Bax, a pro-apoptotic Bcl-2 family member that stimulates the intrinsic (mitochondrial) death pathway by eliciting cytochrome c release from mitochondria.
View Article and Find Full Text PDFThe cellular mechanisms underlying Purkinje neuron death in various neurodegenerative disorders of the cerebellum are poorly understood. Here we investigate an in vitro model of cerebellar neuronal death. We report that cerebellar Purkinje neurons, deprived of trophic factors, die by a form of programmed cell death distinct from the apoptotic death of neighboring granule neurons.
View Article and Find Full Text PDFCerebellar granule neuron (CGN) survival depends on activity of the myocyte enhancer factor-2 (MEF2) transcription factors. Neuronal MEF2 activity is regulated by depolarization via a mechanism that is presently unclear. Here, we show that depolarization-mediated MEF2 activity and CGN survival are compromised by overexpression of the MEF2 repressor histone deacetylase-5 (HDAC5).
View Article and Find Full Text PDFDepolarization promotes the survival of cerebellar granule neurons via activation of the transcription factor myocyte enhancer factor 2D (MEF2D). Removal of depolarization induces hyperphosphorylation of MEF2D on serine/threonine residues, resulting in its decreased DNA binding and susceptibility to caspases. The subsequent loss of MEF2-dependent gene transcription contributes to the apoptosis of granule neurons.
View Article and Find Full Text PDFCerebellar granule neurons depend on insulin-like growth factor-I (IGF-I) for their survival. However, the mechanism underlying the neuroprotective effects of IGF-I is presently unclear. Here we show that IGF-I protects granule neurons by suppressing key elements of the intrinsic (mitochondrial) death pathway.
View Article and Find Full Text PDF