Publications by authors named "Shorouk Badir"

Sulfone-containing compounds are prevalent building blocks in pharmaceuticals and other biomolecules, and they serve as key intermediates in the synthesis of complex scaffolds. During the past decade, several methods have been developed to access sulfones. These strategies, however, require the use of strong reaction conditions, limiting their substrate scope.

View Article and Find Full Text PDF

The preparation of nonanomeric -acyl-saccharides has been developed from two different carboxylic acid feedstocks. This transformation is driven by the synergistic interaction of an electron donor-acceptor complex and Ni catalysis. Primary-, secondary-, and tertiary redox-active esters are incorporated as coupling partners onto preactivated pyranosyl- and furanosyl acids, preserving their stereochemical integrity.

View Article and Find Full Text PDF

A catalyst- and additive-free decarbonylative trifluoromethylthiolation of aldehyde feedstocks has been developed. This operationally simple, scalable, and open-to-air transformation is driven by the selective photoexcitation of electron donor-acceptor (EDA) complexes, stemming from the association of 1,4-dihydropyridines (donor) with -(trifluoromethylthio)phthalimide (acceptor), to trigger intermolecular single-electron transfer events under ambient- and visible light-promoted conditions. Extension to other electron acceptors enables the synthesis of thiocyanates and thioesters, as well as the difunctionalization of [1.

View Article and Find Full Text PDF

DNA-encoded library (DEL) technology has emerged as a time- and cost-efficient technique for the identification of therapeutic candidates in the pharmaceutical industry. Although several reaction classes have been successfully validated in DEL environments, there remains a paucity of DNA-compatible reactions that harness building blocks (BBs) from readily available substructures bearing multifunctional handles for further library diversification under mild, dilute, and aqueous conditions. In this study, the direct C-H carbofunctionalization of medicinally-relevant heteroarenes can be accomplished the photoreduction of DNA-conjugated (hetero)aryl halides to deliver reactive aryl radical intermediates in a regulated fashion within minutes of blue light illumination.

View Article and Find Full Text PDF

DNA-encoded library (DEL) technology features a time- and cost-effective interrogation format for the discovery of therapeutic candidates in the pharmaceutical industry. To develop DEL platforms, the implementation of water-compatible transformations that facilitate the incorporation of multifunctional building blocks (BBs) with high C(sp) carbon counts is integral for success. In this report, a decarboxylative-based hydro of DNA-conjugated trifluoromethyl-substituted alkenes enabled by single-electron transfer (SET) and subsequent hydrogen atom termination through electron donor-acceptor (EDA) complex activation is detailed.

View Article and Find Full Text PDF

Alkene 1,2-dicarbofunctionalizations are highly sought-after transformations as they enable a rapid increase of molecular complexity in one synthetic step. Traditionally, these conjunctive couplings proceed through the intermediacy of alkylmetal species susceptible to deleterious pathways including β-hydride elimination and protodemetalation. Herein, an intermolecular 1,2-dicarbofunctionalization using alkyl -(acyloxy)phthalimide redox-active esters as radical progenitors and organotrifluoroborates as carbon-centered nucleophiles is reported.

View Article and Find Full Text PDF
Article Synopsis
  • A new method combines photochemistry and nickel mediation to create C(sp)-C(sp) bonds, using light to activate a cheap Hantzsch ester.
  • The Hantzsch ester acts as both a photoreductant and a catalyst, facilitating radical generation without the need for additional photocatalysts or metal reductants.
  • This technique allows for the effective coupling of various C(sp)-based radicals with (hetero)aryl bromides under mild conditions, making it suitable for sensitive compounds and drug-like structures.
View Article and Find Full Text PDF

A general aminoalkylation of aryl halides was developed, overcoming intolerance of free amines in nickel-mediated C-C coupling. This transformation features broad functional group tolerance and high efficiency. Taking advantage of the fast desilylation of α-silylamines upon single-electron transfer (SET) facilitated by carbonate, α-amino radicals are generated regioselectively, which then engage in nickel-mediated C-C coupling.

View Article and Find Full Text PDF

Recently, DNA-encoded library (DEL) technology has emerged as an innovative screening modality for the rapid discovery of therapeutic candidates in pharmaceutical settings. This platform enables a cost-effective, time-efficient, and large-scale assembly and interrogation of billions of small organic ligands against a biological target in a single experiment. An outstanding challenge in DEL synthesis is the necessity for water-compatible transformations under ambient conditions.

View Article and Find Full Text PDF

Metallaphotoredox catalysis has evolved into an enabling platform to construct C(sp )-hybridized centers under remarkably mild reaction conditions. The cultivation of abundant radical precursor feedstocks has significantly increased the scope of transition-metal-catalyzed cross-couplings, especially with respect to C(sp )-C(sp ) linkages. In recent years, considerable effort has been devoted to understanding the origin of stereoinduction in dual catalytic processes.

View Article and Find Full Text PDF

Progress in Ni/photoredox dual catalysis has enabled the construction of C(sp)-hybridized centers under extremely mild reaction conditions in the presence of diverse functional groups. These strategies, however, are mainly restricted to the assembly of one C-C or C-heteroatom linkage because of the competitive two-component reactions and facile β-hydride elimination from alkylmetal complexes. Recently, photoinduced nickel-catalyzed 1,2-difunctionalizations of alkenes and alkynes have attracted extensive research efforts as they allow the construction of two sequential chemical bonds from inexpensive starting materials in one pot.

View Article and Find Full Text PDF

The merger of photoredox and nickel catalysis has enabled the construction of quaternary centers. However, the mechanism, role of the ligand, and effect of the spin state for this transformation and related Ni-catalyzed cross-couplings involving tertiary alkyl radicals in combination with bipyridine and diketonate ligands remain unknown. Several mechanisms have been proposed, all invoking a key Ni(III) species prior to undergoing irreversible inner-sphere reductive elimination.

View Article and Find Full Text PDF

DNA-encoded library (DEL) technology has emerged as a novel interrogation modality for ligand discovery in the pharmaceutical industry. Given the increasing demand for a higher proportion of C(sp)-hybridized centers in DEL platforms, a photoredox-mediated cross-coupling and defluorinative alkylation process is introduced using commercially available alkyl bromides and structurally diverse α-silylamines. Notably, no protecting group strategies for amines are necessary for the incorporation of a variety of amino-acid-based organosilanes, providing crucial branching points for further derivatization.

View Article and Find Full Text PDF

A redox-neutral alkyl Petasis reaction has been developed that proceeds via photoredox catalysis. A diverse set of primary, secondary, and tertiary alkyltrifluoroborates participate effectively in this reaction through a single-electron transfer mechanism, in contrast to the traditional two-electron Petasis reaction, which accommodates only unsaturated boronic acids. This protocol is ideal to diversify benzyl-type and glyoxalate-derived aldehydes, anilines, and alkyltrifluoroborates toward the rapid assembly of libraries of higher molecular complexity important in pharmaceutical and agrochemical settings.

View Article and Find Full Text PDF

Described is a cross-electrophilic, deaminative coupling strategy harnessing Katritzky salts as a new species of electrophile in Ni/photoredox dual catalytic reductive cross-coupling reactions. Distinguishing features of this arylation protocol include its mild reaction conditions, high chemoselectivity, and adaptability to a variety of complex substrates [i.e.

View Article and Find Full Text PDF

Tryptophan (Trp) catabolizing enzymes play an important and complex role in the development of cancer. Significant evidence implicates them in a range of inflammatory and immunosuppressive activities. Whereas inhibitors of indoleamine 2,3-dioxygenase-1 (IDO1) have been reported and analyzed in the clinic, fewer inhibitors have been described for tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase-2 (IDO2) which also have been implicated more recently in cancer, inflammation and immune control.

View Article and Find Full Text PDF

The union of photoredox and nickel catalysis has resulted in a renaissance in radical chemistry as well as in the use of nickel-catalyzed transformations, specifically for carbon-carbon bond formation. Collectively, these advances address the longstanding challenge of late-stage cross-coupling of functionalized alkyl fragments. Empowered by the notion that photocatalytically generated alkyl radicals readily undergo capture by Ni complexes, wholly new feedstocks for cross-coupling have been realized.

View Article and Find Full Text PDF

The incorporation of C-glycosides in drug design has become a routine practice for medicinal chemists. These naturally occurring building blocks exhibit attractive pharmaceutical profiles, and have become an important target of synthetic efforts in recent decades. Described herein is a practical, scalable, and versatile route for the synthesis of non-anomeric and unexploited C-acyl glycosides through a Ni/photoredox dual catalytic system.

View Article and Find Full Text PDF

An electrophilic, imide-based, visible-light-promoted photoredox/Ni-catalyzed cross-coupling reaction for the synthesis of aliphatic ketones has been developed. This protocol proceeds through N-C(O) bond activation, made possible through the lower activation energy for metal insertion into this bond due to delocalization of the lone pair of electrons on the nitrogen by electron-withdrawing groups. The operationally simple and mild cross-coupling reaction is performed at ambient temperature and exhibits tolerance for a variety of functional groups.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase-1 (IDO1) is a promising therapeutic target for the treatment of cancer, chronic viral infections, and other diseases characterized by pathological immune suppression. Recently important advances have been made in understanding IDO1's catalytic mechanism. Although much remains to be discovered, there is strong evidence that the mechanism proceeds through a heme-iron bound alkylperoxy transition or intermediate state.

View Article and Find Full Text PDF