Novel scintillation materials have played an indispensable role in the recent remarkable progress witnessed for X-ray imaging technology. Herein, a high-performance X-ray scintillation screen was developed based on a highly efficient hybrid system combining inorganic ZnS (Ag) with thermally activated delayed fluorescence (TADF) scintillator materials via an interfacial energy transfer (EnT) mechanism. ZnS (Ag) has a high X-ray absorption capacity and functions as the initial layer for efficiently converting high-energy X-ray photons into low-energy visible light (acting as a sensitizer) while also serving as an energy donor.
View Article and Find Full Text PDFX-ray imaging scintillators play a crucial role in medical examinations and safety inspections, making them an essential technology in our modern lives. However, commercially available high-performance scintillators are fabricated exclusively from ceramic materials that require harsh preparation conditions and are costly to produce. Organic scintillators have emerged as a promising alternative due to their transparency and ease of fabrication at a low cost.
View Article and Find Full Text PDFStructural modifications to molecular systems that lead to the control of photon emission processes at the interfaces between photoactive materials play a key role in the development of fluorescence sensors, X-ray imaging scintillators, and organic light-emitting diodes (OLEDs). In this work, two donor-acceptor systems were used to explore and reveal the effects of slight changes in chemical structure on interfacial excited-state transfer processes. A thermally activated delayed fluorescence (TADF) molecule was chosen as the molecular acceptor.
View Article and Find Full Text PDF