Triple-negative breast cancer (TNBC) is typically aggressive, difficult to treat, and commonly metastasizes to the visceral organs and soft tissues, including the lungs and the brain. Taxanes represent the most effective and widely used therapeutic class in metastatic TNBC but possess limiting adverse effects that often result in a delay, reduction, or cessation of their use. DZ-2384 is a candidate microtubule-targeting agent with a distinct mechanism of action and strong activity in several preclinical cancer models, with reduced toxicities.
View Article and Find Full Text PDFTumor cells are particularly dependent on NAD due to higher rates of metabolism, DNA synthesis and repair. Nicotinamide phosphoribosyltransferase inhibitors (NAMPTis) inhibit NAD biosynthesis and represent promising new anti-cancer agents. However, clinical efficacy has been limited by toxicities demonstrating the need for drug combinations to broaden the therapeutic index.
View Article and Find Full Text PDFTNF-related apoptosis-inducing ligand (TRAIL/Apo2L) has long been considered a tantalizing target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors DR4 or DR5. Despite initial promise, both recombinant human TRAIL (native TRAIL) and dimeric DR4/DR5 agonist monoclonal antibodies (mAbs) failed in multiple human clinical trials. Here we show that in-frame fusion of human C-propeptide of α1(I) collagen (Trimer-Tag) to the C-terminus of mature human TRAIL leads to a disulfide bond-linked homotrimer which can be expressed at high levels as a secreted protein from CHO cells.
View Article and Find Full Text PDFMicrotubule-targeting agents (MTAs) are widely used anticancer agents, but toxicities such as neuropathy limit their clinical use. MTAs bind to and alter the stability of microtubules, causing cell death in mitosis. We describe DZ-2384, a preclinical compound that exhibits potent antitumor activity in models of multiple cancer types.
View Article and Find Full Text PDFMol Cell Oncol
January 2016
Nicotinamide phosphoribosyltransferase (NAMPT) is crucial for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis in mammalian cells. NAMPT inhibitors represent multifunctional anticancer agents that act on NAD(+) metabolism to shut down glycolysis, nucleotide biosynthesis, and ATP generation and act indirectly as PARP and sirtuin inhibitors. The selectivity of NAMPT inhibitors preys on the increased metabolic requirements to replenish NAD(+) in cancer cells.
View Article and Find Full Text PDFThere has been evidence that mitochondrial fragmentation is required for apoptosis, but the molecular links between the machinery regulating dynamics and cell death have been controversial. Indeed, activated BAX and BAK can form functional channels in liposomes, bringing into question the contribution of mitochondrial dynamics in apoptosis. We now demonstrate that the activation of apoptosis triggers MAPL/MUL1-dependent SUMOylation of the fission GTPase Drp1, a process requisite for cytochrome c release.
View Article and Find Full Text PDFBackground: Obatoclax is a clinical stage drug candidate that has been proposed to target and inhibit prosurvival members of the Bcl-2 family, and thereby contribute to cancer cell lethality. The insolubility of this compound, however, has precluded the use of many classical drug-target interaction assays for its study. Thus, a direct demonstration of the proposed mechanism of action, and preferences for individual Bcl-2 family members, remain to be established.
View Article and Find Full Text PDFWe have discovered a fragment of the natural product roseophilin, a member of the prodiginine family, that antagonizes Mcl-1 functions in a liposome-based assay for mitochondrial membrane permeabilization. By tailoring this substance such that it can participate in salt bridging with the protein surface, we have prepared the first prodiginine inspired structure that shows direct, saturable binding to a recombinant Bcl-2 family member .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2014
Enhanced protein synthesis capacity is associated with increased tumor cell survival, proliferation, and resistance to chemotherapy. Cancers like multiple myeloma (MM), which display elevated activity in key translation regulatory nodes, such as the PI3K/mammalian target of rapamycin and MYC-eukaryotic initiation factor (eIF) 4E pathways, are predicted to be particularly sensitive to therapeutic strategies that target this process. To identify novel vulnerabilities in MM, we undertook a focused RNAi screen in which components of the translation apparatus were targeted.
View Article and Find Full Text PDFGMX1778 and its prodrug GMX1777 represent a new class of cancer drugs that targets nicotinamide phosphoribosyltransferase (NAMPT) as a new strategy to interfere with biosynthesis of the key enzymatic cofactor NAD, which is critical for a number of cell functions, including DNA repair. Using a genome-wide synthetic lethal siRNA screen, we identified the folate pathway-related genes, deoxyuridine triphosphatase and dihydrofolate reductase, the silencing of which sensitized non-small cell lung carcinoma (NSCLC) cells to the cytotoxic effects of GMX. Pemetrexed is an inhibitor of dihydrofolate reductase currently used to treat patients with nonsquamous NSCLC.
View Article and Find Full Text PDFCancer cells undergo extensive genetic and epigenetic rewiring to support the malignant phenotype, and yet cell survival and proliferation often remain dependent on one or a limited number of driver mutations. This is the concept of oncogene addiction, the elucidation of which has led to substantial progress in therapeutic interventions. However, because resistance mechanisms often emerge, explicating the pathways that connect therapeutic oncogene inactivation to the cell death machinery is critical to exploiting additional synthetic lethal opportunities.
View Article and Find Full Text PDFThe Bcl2 pro-survival protein family has long been recognized for its important contributions to cancer. At elevated levels relative to pro-apoptotic effector members, the survival proteins prevent cancer cells from initiating apoptosis in the face of many intrinsic tumour-suppressing pathways and extrinsic therapeutic treatments aimed at controlling tumorigenesis. Recent studies, including genome-wide analyses, have begun to focus attention on a particularly enigmatic member of the family-myeloid cell leukaemia 1 (Mcl1).
View Article and Find Full Text PDFIn 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding.
View Article and Find Full Text PDFCISD2, an ER BCL2-associated autophagy regulator also known as NAF-1, is responsible for the human degenerative disorder Wolfram Syndrome 2. In order to interrogate the physiological role of CISD2 we generated and characterized the Cisd2 gene deletion in mice. Cisd2 null mice manifest significant degeneration in skeletal muscle tissues, which is accompanied with augmented autophagy, dysregulated Ca ( 2+) homeostasis and elongated mitochondria.
View Article and Find Full Text PDFNutrient-deprivation autophagy factor-1 (NAF-1) was identified as an endoplasmic reticulum (ER) BCL-2-interacting protein, which functions to mediate the ability of ER BCL-2 to antagonize Beclin 1-dependent autophagy and depress ER calcium stores. In humans, a point mutation in Naf-1 (synonyms: Cisd2, Eris, Miner1 and Noxp70) is responsible for the neurodegenerative disorder Wolfram Syndrome 2. Here, we describe the generation and characterization of the Naf-1 gene deletion in mice.
View Article and Find Full Text PDFBap31 is an integral ER membrane protein which functions as an escort factor in the sorting of newly synthesized membrane proteins within the endoplasmic reticulum (ER). During apoptosis signaling, Bap31 is subject to early cleavage by initiator caspase-8. The resulting p20Bap31 (p20) fragment has been shown to initiate proapoptotic ER-mitochondria Ca2+ transmission, and to exert dominant negative (DN) effects on ER protein trafficking.
View Article and Find Full Text PDFAnti-apoptotic Bcl2 family proteins such as Bcl-x(L) protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-x(L) enhances the efficiency of energy metabolism. Our evidence indicates that Bcl-x(L)interacts directly with the β-subunit of the F(1)F(O) ATP synthase, decreasing an ion leak within the F(1)F(O) ATPase complex and thereby increasing net transport of H(+) by F(1)F(O) during F(1)F(O) ATPase activity.
View Article and Find Full Text PDFWe carried out docking and molecular dynamics simulations on ABT-737 and obatoclax, which are inhibitors of the Bcl-2 family of proteins. We modeled the binding mode of ABT-737 with Bcl-x(L) , Bcl-2, and Mcl-1 and examined their dynamical behavior. We found that the binding of the chlorobiphenyl end of ABT-737 was quite stable across all three proteins.
View Article and Find Full Text PDFMcl-1, a pro-survival member of the Bcl-2 family located at the mitochondrial outer membrane, is subject to constitutive ubiquitylation by the Bcl-2 homology 3-only E3 ligase, Mule/Lasu1, resulting in rapid steady-state degradation via the proteasome. Insertion of newly synthesized Mcl-1 into the mitochondrial outer membrane is dependent on its C-terminal transmembrane segment, but once inserted, the N terminus of a portion of the Mcl-1 molecules can be subject to proteolytic processing. Remarkably, this processing requires an intact electrochemical potential across the inner membrane.
View Article and Find Full Text PDFA study in this issue of sheds light on how mitochondria–ER dynamics, which affect various cell functions, regulate Bax/Bak-driven apoptosis within the complex milieu of the cell. In cell death, these organelles engage in an unanticipated two-way communication, from mitochondria to ER and back again.
View Article and Find Full Text PDFInability to meet protein folding demands within the endoplasmic reticulum (ER) activates the unfolded protein response (UPR), a signaling pathway with both adaptive and apoptotic outputs. While some secretory cell types have a remarkable ability to increase protein folding capacity, their upper limits can be reached when pathological conditions overwhelm the fidelity and/or output of the secretory pathway. Irremediable 'ER stress' induces apoptosis and contributes to cell loss in several common human diseases, including type 2 diabetes and neurodegeneration.
View Article and Find Full Text PDFThe complete mitochondrial DNA (mtDNA) genome of Hubbard's or Zombitse sportive lemur (Lepilemur hubbardorum) was generated by polymerase chain reaction (PCR) amplification, primer-walking sequencing and fragment cloning. Comparative analyses of Hubbard's sportive lemur were conducted with available complete mitochondrial genome sequences from eight other lemur species. The mitochondrial genome of Hubbard's sportive lemur is 16,854 base pairs (bp) and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one control region.
View Article and Find Full Text PDFIn addition to mitochondria, BCL-2 is located at the endoplasmic reticulum (ER) where it is a constituent of several distinct complexes. Here, we identify the BCL-2-interacting protein at the ER, nutrient-deprivation autophagy factor-1 (NAF-1)-a bitopic integral membrane protein whose defective expression underlies the aetiology of the neurodegenerative disorder Wolfram syndrome 2 (WFS2). NAF-1 contains a two iron-two sulphur coordinating domain within its cytosolic region, which is necessary, but not sufficient for interaction with BCL-2.
View Article and Find Full Text PDF