Publications by authors named "Shonoi Ming"

Antiphagocytic capsular polysaccharides are key components of effective vaccines against pathogenic bacteria. groups B and C, as well as serogroups K1 and K92, are coated with polysialic acid capsules. Although the chemical structure of these polysaccharides and the organization of the associated gene clusters have been described for many years, only recently have the details of the biosynthetic pathways been discovered.

View Article and Find Full Text PDF

Polysialic acids (PSA) are important extracellular virulence factors of the human pathogens Neisseria meningitidis and Escherichia coli. The importance of these polysaccharides in virulence make the polysialyltransferases (PST) targets for therapeutic drugs and protein engineering to facilitate efficient vaccine production. Here, we have generated recombinant bovine nucleotide monophosphate kinase to facilitate steady state kinetic assays of the PST.

View Article and Find Full Text PDF

Neisseria meningitidis Group X is an emerging cause of bacterial meningitis in Sub-Saharan Africa. The capsular polysaccharide of Group X is a homopolymer of N-acetylglucosamine α(1-4) phosphate and is a vaccine target for prevention of disease associated with this meningococcal serogroup. We have demonstrated previously that the formation of the polymer is catalyzed by a phosphotransferase which transfers N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to the 4-hydroxyl of the N-acetylglucosamine on the nonreducing end of the growing chain.

View Article and Find Full Text PDF

The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion.

View Article and Find Full Text PDF

Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide-protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize interactions of low affinity peptides with their cognate protein targets.

View Article and Find Full Text PDF

Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging, as the active sites of KDM1A-B and KDM4A-D histone demethylases are highly conserved. Most inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme that oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4 of histone H3 (H3K4Me1, H3K4Me2) and can contribute to gene silencing. This study describes the design and synthesis of analogues of a monoamine oxidase antidepressant, phenelzine, and their LSD1 inhibitory properties. A novel phenelzine analogue (bizine) containing a phenyl-butyrylamide appendage was shown to be a potent LSD1 inhibitor in vitro and was selective versus monoamine oxidases A/B and the LSD1 homologue, LSD2.

View Article and Find Full Text PDF

Mutants of orotidine 5'-monophosphate decarboxylase containing all possible single (Q215A, Y217F, and R235A), double, and triple substitutions of the side chains that interact with the phosphodianion group of the substrate orotidine 5'-monophosphate have been prepared. Essentially the entire effect of these mutations on the decarboxylation of the truncated neutral substrate 1-(β-d-erythrofuranosyl)orotic acid that lacks a phosphodianion group is expressed as a decrease in the third-order rate constant for activation by phosphite dianion. The results are consistent with a model in which phosphodianion binding interactions are utilized to stabilize a rare closed enzyme form that exhibits a high catalytic activity for decarboxylation.

View Article and Find Full Text PDF

Reversible lysine acetylation and methylation regulate the function of a wide variety of proteins, including histones. Here, we have synthesized azalysine-containing peptides in acetylated and unacetylated forms as chemical probes of the histone deacetylases (HDAC8, Sir2Tm, and SIRT1) and the histone demethylase, LSD1. We have shown that the acetyl-azalysine modification is a fairly efficient substrate for the sirtuins, but a weaker substrate for HDAC8, a classical HDAC.

View Article and Find Full Text PDF