For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited.
View Article and Find Full Text PDFVisual cortical neurons encode the position and motion direction of specific stimuli retrospectively, without any locomotion or task demand. The hippocampus, which is a part of the visual system, is hypothesized to require self-motion or a cognitive task to generate allocentric spatial selectivity that is scalar, abstract and prospective. Here we measured rodent hippocampal selectivity to a moving bar of light in a body-fixed rat to bridge these seeming disparities.
View Article and Find Full Text PDFNitrogen-vacancy (NV) centers are defects in diamonds, which, due to their electronic structure, have been extensively studied as magnetic field sensors. Such field detection applications usually employ the NV centers to detect field components aligned with the direction of the internally-defined spin axis of the NV center. In this work we detect magnetic fields which are slightly misaligned with the NV center axis.
View Article and Find Full Text PDFIn this Letter, we present a passively Q-switched Yb:Y2O3 waveguide laser using evanescent-field interaction with an atmospheric-pressure-chemical-vapor-deposited graphene saturable absorber. The waveguide, pumped by a broad area diode laser, produced an average output power of 456 mW at an absorbed power of 4.1 W.
View Article and Find Full Text PDFThe first, to the best of our knowledge, Q-switched operation of a pulsed-laser-deposited waveguide laser is presented. A clad Yb:Y(2)O(3) waveguide was Q-switched using an output coupling mirror coated with a single layer of graphene deposited by atmospheric pressure chemical vapor deposition. During continuous-wave operation, a maximum power of 83 mW at a slope efficiency of 25% was obtained.
View Article and Find Full Text PDFBecause of the atomic thinness of graphene, its integration into a device will always involve its interaction with at least one supporting substrate, making the surface energy of graphene critical to its real-life applications. In the current paper, the contact angle of graphene synthesized by chemical vapor deposition (CVD) was monitored temporally after synthesis using water, diiodomethane, ethylene glycol, and glycerol. The surface energy was then calculated based on the contact angle data by the Fowkes, Owens-Wendt (extended Fowkes), and Neumann models.
View Article and Find Full Text PDF