Formaldehyde is commonly used as an alkylating agent in the pharmaceutical industry. Consequently, its residual level in drug substances and/or their intermediates needs to be accurately quantified. Formaldehyde is a small, volatile molecule with a weak chromophore (the carbonyl group), and its direct analysis by GC-FID and HPLC-UV is difficult.
View Article and Find Full Text PDFIn situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation.
View Article and Find Full Text PDFUnder dry, anaerobic conditions, TiO(2) photocatalysis of carboxylic acid precursors resulted in carbon-carbon bond-forming processes. High yields of dimers were obtained from TiO(2) treatment of carboxylic acids alone. On inclusion of electron-deficient alkenes, efficient alkylations were achieved with methoxymethyl and phenoxymethyl radicals.
View Article and Find Full Text PDF