Tambjamine YP1 is a pyrrole-containing natural product. Analysis of the enzymes encoded in the "" biosynthetic gene cluster (BGC) identified a unique di-domain biocatalyst (TamH). Sequence and bioinformatic analysis predicts that TamH comprises an N-terminal, pyridoxal 5'-phosphate (PLP)-dependent transaminase (TA) domain fused to a NADH-dependent C-terminal thioester reductase (TR) domain.
View Article and Find Full Text PDFThe carbon backbone of biotin is constructed from the C di-acid pimelate, which is converted to an acyl-CoA thioester by an ATP-dependent, pimeloyl-CoA synthetase (PCAS, encoded by BioW). The acyl-thioester is condensed with ʟ-alanine in a decarboxylative, Claisen-like reaction to form an aminoketone (8-amino-7-oxononanoic acid, AON). This step is catalysed by the pyridoxal 5'-phosphate (PLP)-dependent enzyme (AON synthase, AONS, encoded by BioF).
View Article and Find Full Text PDFGlobal societal challenges emphasize the importance of collaboration between scientists and policy-makers, while the participation of a diverse group of professionals, including early-career scientists, is critical towards a sustainable future. The European Young Chemists' Network (EYCN) has been actively working with the European Chemical Society (EuChemS) to create a platform for early-career chemists in policy advice. This article comments on the possible roles of scientists in policy-making and provides an overview of relevant initiatives and platforms at the European level that could facilitate involvement.
View Article and Find Full Text PDFThe amide functional group is ubiquitous in nature and one of the most important motifs in pharmaceuticals, agrochemicals, and other valuable products. While coupling amides and carboxylic acids is a trivial synthetic transformation, it often requires protective group manipulation, along with stoichiometric quantities of expensive and deleterious coupling reagents. Nature has evolved a range of enzymes to construct amide bonds, the vast majority of which utilize adenosine triphosphate to activate the carboxylic acid substrate for amine coupling.
View Article and Find Full Text PDFNatural products are secondary metabolites produced by many different organisms such as bacteria, fungi and plants. These biologically active molecules have been widely exploited for clinical application. Here we investigate TamA, a key enzyme from the biosynthetic pathway of tambjamine YP1, an acylated bipyrrole that is produced by the marine microorganism .
View Article and Find Full Text PDF