Publications by authors named "Shon Booker"

KRAS has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-"undruggable" target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRAS to identify inhibitors suitable for clinical development.

View Article and Find Full Text PDF

Pim kinases are a family of constitutively active serine/threonine kinases that are partially redundant and regulate multiple pathways important for cell growth and survival. In human disease, high expression of the three Pim isoforms has been implicated in the progression of hematopoietic and solid tumor cancers, which suggests that Pim kinase inhibitors could provide patients with therapeutic benefit. Herein, we describe the structure-guided optimization of a series of quinazolinone-pyrrolodihydropyrrolone analogs leading to the identification of potent pan-Pim inhibitor 28 with improved potency, solubility, and drug-like properties.

View Article and Find Full Text PDF

The high expression of proviral insertion site of Moloney murine leukemia virus kinases (Pim-1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role in promoting cell survival and proliferation while suppressing apoptosis. The three isoforms of Pim protein appear largely redundant in their oncogenic functions. Thus, a pan-Pim kinase inhibitor is highly desirable.

View Article and Find Full Text PDF

The structure-based design and optimization of a novel series of selective PERK inhibitors are described resulting in the identification of 44 as a potent, highly selective, and orally active tool compound suitable for PERK pathway biology exploration both in vitro and in vivo.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase family catalyzes the phosphorylation of phosphatidylinositol-4,5-diphosphate to phosphatidylinositol-3,4,5-triphosphate, a secondary messenger which plays a critical role in important cellular functions such as metabolism, cell growth, and cell survival. Our efforts to identify potent, efficacious, and orally available phosphatidylinositol 3-kinase (PI3K) inhibitors as potential cancer therapeutics have resulted in the discovery of 4-(2-((6-methoxypyridin-3-yl)amino)-5-((4-(methylsulfonyl)piperazin-1-yl)methyl)pyridin-3-yl)-6-methyl-1,3,5-triazin-2-amine (1). In this paper, we describe the optimization of compound 1, which led to the design and synthesis of pyridyltriazine 31, a potent pan inhibitor of class I PI3Ks with a superior pharmacokinetic profile.

View Article and Find Full Text PDF

A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

View Article and Find Full Text PDF

As part of our effort toward developing an effective therapeutic agent for c-Met-dependent tumors, a pyrazolone-based class II c-Met inhibitor, N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3-fluorophenyl)-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (1), was identified. Knowledge of the binding mode of this molecule in both c-Met and VEGFR-2 proteins led to a novel strategy for designing more selective analogues of 1. Along with detailed SAR information, we demonstrate that the low kinase selectivity associated with class II c-Met inhibitors can be improved significantly.

View Article and Find Full Text PDF

N-(6-(6-Chloro-5-(4-fluorophenylsulfonamido)pyridin-3-yl)benzo[d]thiazol-2-yl)acetamide (1) is a potent and efficacious inhibitor of PI3Kα and mTOR in vitro and in vivo. However, in hepatocyte and in vivo metabolism studies, 1 was found to undergo deacetylation on the 2-amino substituent of the benzothiazole. As an approach to reduce or eliminate this metabolic deacetylation, a variety of 6,5-heterocyclic analogues were examined as an alternative to the benzothiazole ring.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K) family catalyzes the ATP-dependent phosphorylation of the 3'-hydroxyl group of phosphatidylinositols and plays an important role in cell growth and survival. There is abundant evidence demonstrating that PI3K signaling is dysregulated in many human cancers, suggesting that therapeutics targeting the PI3K pathway may have utility for the treatment of cancer. Our efforts to identify potent, efficacious, and orally available PI3K/mammalian target of rapamycin (mTOR) dual inhibitors resulted in the discovery of a series of substituted quinolines and quinoxalines derivatives.

View Article and Find Full Text PDF

Phosphoinositide 3-kinase α (PI3Kα) is a lipid kinase that plays a key regulatory role in several cellular processes. The mutation or amplification of this kinase in humans has been implicated in the growth of multiple tumor types. Consequently, PI3Kα has become a target of intense research for drug discovery.

View Article and Find Full Text PDF

c-Met is a receptor tyrosine kinase that plays a key role in several cellular processes but has also been found to be overexpressed and mutated in different human cancers. Consequently, targeting this enzyme has become an area of intense research in drug discovery. Our studies began with the design and synthesis of novel pyrimidone 7, which was found to be a potent c-Met inhibitor.

View Article and Find Full Text PDF

DPC168, a benzylpiperidine-substituted aryl urea CCR3 antagonist evaluated in clinical trials, was a relatively potent inhibitor of the 2D6 isoform of cytochrome P-450 (CYP2D6). Replacement of the cyclohexyl central ring with saturated heterocycles provided potent CCR3 antagonists with improved selectivity against CYP2D6. The favorable preclinical profile of DPC168 was maintained in an acetylpiperidine derivative, BMS-570520.

View Article and Find Full Text PDF