Publications by authors named "Shoma Sato"

Transient receptor potential (TRP) channels are primary sensory molecules in animals and are involved in detecting a diverse range of physical and chemical cues in the environments. Considering the crucial role of TRPA1 channels in nocifensive behaviors and aversive responses across various insect species, activators of TRPA1 are promising candidates for insect pest control. In this study, we demonstrate that 2-methylthiazoline (2MT), an artificial volatile thiazoline compound originally identified as a stimulant for mouse TRPA1, can be utilized as a novel repellent for fruit flies, .

View Article and Find Full Text PDF

Bio-orthogonal ligations that crosslink living cells with a substrate or other cells require high stability and rapid kinetics to maintain the nature of target cells. In this study, we report water-soluble cyclooctadiyne (WS-CODY) derivatives that undergo an ion-pair enhanced double-click reaction. The cationic side chain of WS-CODY accelerated the kinetics on the azide-modified cell surface due to proximity effect.

View Article and Find Full Text PDF

Cell-coupled field-effect transistor (FET) biosensors have attracted considerable attention because of their high sensitivity to biomolecules. The use of insect cells (Sf21) as a core sensor element is advantageous due to their stable adhesion to sensors at room temperature. Although visualization of the insect cell-substrate interface leads to logical amplification of signals, the spatiotemporal processes at the interfaces have not yet been elucidated.

View Article and Find Full Text PDF

The spatiotemporal regulation of gene expression is essential to ensure robust phenotypic outcomes. Pigmentation patterns in Drosophila are determined by pigments biosynthesized in the developing epidermis and the cis-regulatory elements of the genes involved in this process are well-characterized. Here, we report that the known primary epidermal enhancer is dispensable for the transcriptional activation of ebony (involved in light-colored pigment synthesis) in the developing epidermis of Drosophila melanogaster.

View Article and Find Full Text PDF

Long-term memory (LTM) is stored as functional modifications of relevant neural circuits in the brain. A large body of evidence indicates that the initial establishment of such modifications through the process known as memory consolidation requires learning-dependent transcriptional activation and protein synthesis. However, it remains poorly understood how the consolidated memory is maintained for a long period in the brain, despite constant turnover of molecular substrates.

View Article and Find Full Text PDF

Key Points: Synaptic potentiation in Drosophila is observed at cholinergic synapses between antennal lobe (AL) and mushroom body (MB) neurons in the adult brain; however, depression at the AL-MB synapses has not yet been identified. By ex vivo Ca imaging in an isolated cultured Drosophila brain, we found novel activity-dependent depression at the AL-MB synapses. The degree of Ca responses after repetitive AL stimulation is significantly reduced in the dendritic region of MB neurons (calyx) compared with those before AL stimulation, and this reduction of Ca responses remains for at least 30 min.

View Article and Find Full Text PDF

Apterous (Ap), the best studied LIM-homeodomain transcription factor in Drosophila, cooperates with the cofactor Chip (Chi) to regulate transcription of specific target genes. Although Ap regulates various developmental processes, its function in the adult brain remains unclear. Here, we report that Ap and Chi in the neurons expressing PDF, a neuropeptide, play important roles in proper sleep/wake regulation in adult flies.

View Article and Find Full Text PDF

In the fruitfly Drosophila melanogaster, circadian rhythms of locomotor activity under constant darkness are controlled by pacemaker neurons. To understand how behavioral rhythmicity is generated by the nervous system, it is essential to identify the output circuits from the pacemaker neurons. A recent study of Drosophila has suggested that pacemaker neurons project to mushroom body (MB) neurons, which are considered the memory center in Drosophila.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels have attracted considerable attention because of their vital roles in primary sensory neurons, mediating responses to a wide variety of external environmental stimuli. However, much less is known about how TRP channels in the brain respond to intrinsic signals and are involved in neurophysiological processes that control complex behaviors. Painless (Pain) is the Drosophila TRP channel that was initially identified as a molecular sensor responsible for detecting noxious thermal and mechanical stimuli.

View Article and Find Full Text PDF

In a variety of animal species, females hold a leading position in evaluating potential mating partners. The decision of virgin females to accept or reject a courting male is one of the most critical steps for mating success. In the fruitfly Drosophila melanogaster, however, the molecular and neuronal mechanisms underlying female receptivity are still poorly understood, particularly for virgin females.

View Article and Find Full Text PDF

Considerable evidence has demonstrated that transient receptor potential (TRP) channels play vital roles in sensory neurons, mediating responses to various environmental stimuli. In contrast, relatively little is known about how TRP channels exert their effects in the central nervous system to control complex behaviors. This is also true for the Drosophila TRP channel encoded by painless (pain).

View Article and Find Full Text PDF

In addition to its established function in the regulation of circadian rhythms, the Drosophila gene period (per) also plays an important role in processing long-term memory (LTM). Here, we used courtship conditioning as a learning paradigm and revealed that (1) overexpression and knocking down of per in subsets of brain neurons enhance and suppress LTM, respectively, and (2) suppression of synaptic transmission during memory retrieval in the same neuronal subsets leads to defective LTM. Further analysis strongly suggests that the brain region critical for per-dependent LTM regulation is the fan-shaped body, which is involved in sleep-induced enhancement of courtship LTM.

View Article and Find Full Text PDF