The relationship between slag structure and viscosity is studied, employing Raman spectroscopy for the five-component slag system of MnO-SiO-CaO-AlO-MgO and its subsystems. This study aims to investigate the influence of variations in slag composition on viscosity, which is crucial for optimizing industrial processes. Based on industrial slag compositions produced in a silicomanganese submerged arc furnace, 17 slags with a fixed content of MnO of 10 wt% are synthesized with varying contents of SiO of 33 to 65 wt%; CaO within the range of 14 to 40 wt%; and fixed contents of AlO and MgO of 17 and 6 wt%, respectively.
View Article and Find Full Text PDFManganese sludge, an industrial waste product in the ferroalloy industry, contains various components and holds significant importance for sustainable development through its valorization. This study focuses on characterizing a manganese sludge and investigating its behavior during sulfuric acid leaching. The influence of process conditions, including temperature, acid concentration, liquid to solid ratio, and leaching duration, was examined.
View Article and Find Full Text PDFOptical rotations of several conformers of four fluorinated molecules containing the 1-naphthalene or 4-(benzyloxy)phenyl group at the stereocenter have been calculated both in the gas phase and in an aqueous environment. For the compounds containing the 4-(benzyloxy)phenyl group, solvent effects on the optical rotations have also been investigated in chloroform as solvent. Optical rotations have been obtained by time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional and the aug-cc-pVDZ basis set at λ = 589 nm.
View Article and Find Full Text PDFWe have calculated the optical rotation at λ = 589 nm for 45 fluorinated alcohols, amines, amides, and esters using both time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional and the second-order approximate coupled-cluster singles and doubles (CC2) method, where the aug-cc-pVDZ basis set was adopted in both methods. Comparison of CAM-B3LYP and CC2 results to experiments illustrates that both methods are able to reproduce the experimental optical rotation results for both sign and magnitude. Several conformers for molecules containing the benzyloxy and naphthalene groups needed to be considered to obtain consistent signs with experiments, and these conformers are discussed in detail.
View Article and Find Full Text PDFOptical rotation of 14 molecules containing the pyrrole group is calculated by employing both time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional and the second-order approximate coupled-cluster singles and doubles (CC2) method. All optical rotations have been provided using the aug-cc-pVDZ basis set at λ = 589 nm. The two methods predict similar results for both sign and magnitude for the optical rotation of all molecules.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2016
We have calculated the electronic optical rotation of seven molecules using coupled cluster singles-doubles (CCSD) and the second-order approximation (CC2) employing the aug-cc-pVXZ (X = D, T, or Q) basis sets. We have also compared to time-dependent density functional theory (TDDFT) by utilizing two functionals B3LYP and CAM-B3LYP and the same basis sets. Using relative and absolute error schemes, our calculations demonstrate that the CAM-B3LYP functional predicts optical rotation with the minimum deviations compared to CCSD at λ = 355 and 589.
View Article and Find Full Text PDFThe complex frequency-dependent polarizability and π → π* excitation energy of azobenzene compounds are investigated by a combined charge-transfer and point-dipole interaction (CT/PDI) model. To parametrize the model, we adopted time-dependent density functional theory (TDDFT) calculations of the frequency-dependent polarizability extended with excited-state lifetimes to include also its imaginary part. The results of the CT/PDI model are compared with the TDDFT calculations and experimental data demonstrating that the CT/PDI model is fully capable to reproduce the static polarizability as well as the π → π* excitation energy for these compounds.
View Article and Find Full Text PDF