Publications by authors named "Shokoufeh Soleimani"

Staphylococcus aureus (S. aureus) is recognized as one of the most common causes of gastroenteritis worldwide. This pathogen is a major foodborne pathogen that can cause many different types of various infections, from minor skin infections to lethal blood infectious diseases.

View Article and Find Full Text PDF

Staphylococcus aureus (S. aureus), a common foodborne pathogen, poses significant public health challenges due to its association with various infectious diseases. A key player in its pathogenicity, which is the IsdA protein, is an essential virulence factor in S.

View Article and Find Full Text PDF

In this work, a novel molecularly imprinted electrochemical sensor (MIES) has been fabricated based on electropolymerization of a molecularly imprinted polymer (MIP) onto a glassy carbon electrode (GCE) modified with gold-palladium alloy nanoparticles (AuPd NPs)/polydopamine film (PDA)/multiwalled carbon nanotubes-chitosan-ionic liquid (MWCNTs-CS-IL) for voltammetric and impedimetric determination of cholestanol (CHO). Modifications applied to the bare GCE formed an excellent biocompatible composite film which was able to selectively detect CHO molecules. Modifications applied to the bare GCE were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (SEM).

View Article and Find Full Text PDF

This paper reports results of a valuable study on investigation of inhibitory effects of the sulfonamide derivative of quercetin (QD) on human carbonic anhydrase II (CA-II) by electrochemical and chemometrical approaches. To achieve this goal, a glassy carbon electrode (GCE) was chosen as the sensing platform and different electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) were used to investigate and comparing inhibitory effects of quercetin (Q) and QD on CA-II. By the use of EQUISPEC, SPECFIT, SQUAD and REACTLAB as efficient hard-modeling algorithms, bindings of Q and QD with CA-II were investigated and the results confirmed that the QD inhibited the CA-II stronger than Q suggesting a highly relevant role of QD's-SONH group in inhibiting activity and also was confirmed by docking studies.

View Article and Find Full Text PDF