Publications by authors named "Shoko Shinya"

Transthyretin (TTR) is a homo-tetrameric serum protein associated with sporadic and hereditary systemic amyloidosis. TTR amyloid formation proceeds by the dissociation of the TTR tetramer and the subsequent partial unfolding of the TTR monomer into an aggregation-prone conformation. Although TTR kinetic stabilizers suppress tetramer dissociation, a strategy for stabilizing monomers has not yet been developed.

View Article and Find Full Text PDF

Fragment-based drug discovery (FBDD), which involves small compounds <300 Da, has been recognized as one of the most powerful tools for drug discovery. In FBDD, the affinity of hit compounds tends to be low, and the analysis of protein-compound interactions becomes difficult. In an effort to overcome such difficulty, we developed a F-NMR screening method optimizing a F chemical library focusing on highly soluble monomeric molecules.

View Article and Find Full Text PDF

Structure-based high-throughput screening of chemical compounds that target protein-protein interactions (PPIs) is a promising technology for gaining insight into how plant development is regulated, leading to many potential agricultural applications. At present, there are no examples of using high-throughput screening to identify chemicals that target plant transcriptional complexes, some of which are responsible for regulating multiple physiological functions. Florigen, a protein encoded by FLOWERING LOCUS T (FT), was initially identified as a molecule that promotes flowering and has since been shown to regulate flowering and other developmental phenomena such as tuber formation in potato (Solanum tuberosum).

View Article and Find Full Text PDF

GH19 and GH22 glycoside hydrolases belonging to the lysozyme superfamily have a related structure/function. A highly conserved tryptophan residue, Trp103, located in the binding groove of a GH19 chitinase from moss Bryum coronatum (BcChi-A) appears to have a function similar to that of well-known Trp62 in GH22 lysozymes. Here, we found that mutation of Trp103 to phenylalanine (W103F) or alanine (W103A) strongly reduced the enzymatic activity of BcChi-A.

View Article and Find Full Text PDF

Background: In protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules.

Methods: We designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS.

View Article and Find Full Text PDF

Motivation: Multi-dimensional NMR spectra are generally used for NMR signal assignment and structure analysis. There are several programs that can achieve highly automated NMR signal assignments and structure analysis. On the other hand, NMR spectra tend to have a large number of noise peaks even for data acquired with good sample and machine conditions, and it is still difficult to eliminate these noise peaks.

View Article and Find Full Text PDF

Due to their lower production cost compared with monoclonal antibodies, single-chain variable fragments (scFvs) have potential for use in several applications, such as for diagnosis and treatment of a range of diseases, and as sensor elements. However, the usefulness of scFvs is limited by inhomogeneity through the formation of dimers, trimers, and larger oligomers. The scFv protein is assumed to be in equilibrium between the closed and open states formed by assembly or disassembly of VH and VL domains.

View Article and Find Full Text PDF

We review studies on biochemical characterization of the structures and functions of chitinase, chitosanase, and chitobiase produced by cells of the bacterium, Paenibacillus sp. IK-5. The IK-5 chitinases comprise two GH18 chitinases (ChiA and ChiB), an auxiliary activity family 10 (AA10) chitin oxydehydrolase (ChiC), and a GH19 chitinase (ChiD).

View Article and Find Full Text PDF

Chitosan interaction with chitosanase was examined through analysis of spectral line shapes in the NMR HSQC titration experiments. We established that the substrate, chitosan hexamer, binds to the enzyme through the three-state induced-fit mechanism with fast formation of the encounter complex followed by slow isomerization of the bound-state into the final conformation. Mapping of the chemical shift perturbations in two sequential steps of the mechanism highlighted involvement of the substrate-binding subsites and the hinge region in the binding reaction.

View Article and Find Full Text PDF

Chitosan-related enzymes including chitosanases, exo-β-glucosaminidases, and enzymes having chitosan-binding modules recognize ligands through electrostatic interactions between the acidic amino acids in proteins and amino groups of chitosan polysaccharides. However, in GH8 chitosanases, several aromatic residues are also involved in substrate recognition through stacking interactions, and these enzymes consequently hydrolyze β-1,4-glucan as well as chitosan. The binding grooves of these chitosanases are extended and opened at both ends of the grooves, so that the enzymes can clamp a long chitosan polysaccharide.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs), composed of a histidine kinase sensor (HK) and its cognate response regulator, sense and respond to environmental changes and are related to the virulence of pathogens. TCSs are potential targets for alternative antibiotics and anti-virulence agents. Here we found that waldiomycin, an angucycline antibiotic that inhibits a growth essential HK, WalK, in Gram-positive bacteria, also inhibits several class I HKs from the Gram-negative Escherichia coli.

View Article and Find Full Text PDF

An antifungal chitosanase/glucanase isolated from the soil bacterium Paenibacillus sp. IK-5 has two CBM32 chitosan-binding modules (DD1 and DD2) linked in tandem at the C-terminus. In order to obtain insights into the mechanism of chitosan recognition, the structures of DD1 and DD2 were solved by NMR spectroscopy and crystallography.

View Article and Find Full Text PDF

A goose-type lysozyme from ostrich egg white (OEL) was produced by Escherichia coli expression system, and the role of His101 of OEL in the enzymatic reaction was investigated by NMR spectroscopy, thermal unfolding, and theoretical modeling of the enzymatic hydrolysis of hexa-N-acetylchitohexaose, (GlcNAc)6. Although the binding of tri-N-acetylchitotriose, (GlcNAc)3, to OEL perturbed several backbone resonances in the (1)H-(15)N HSQC spectrum, the chemical shift of the backbone resonance of His101 was not significantly affected. However, apparent pKa values of His101 and Lys102 determined from the pH titration curves of the backbone chemical shifts were markedly shifted by (GlcNAc)3 binding.

View Article and Find Full Text PDF

Enhancing the transglycosylation (TG) activity of glycoside hydrolases does not always result in the production of oligosaccharides with longer chains, because the TG products are often decomposed into shorter oligosaccharides. Here, we investigated the mutation strategies for obtaining chitooligosaccharides with longer chains by means of TG reaction catalyzed by family GH18 chitinase A from Vibrio harveyi (VhChiA). HPLC analysis of the TG products from incubation of chitooligosaccharide substrates, GlcNAc(n), with several mutant VhChiAs suggested that mutant W570G (mutation of Trp570 to Gly) and mutant D392N (mutation of Asp392 to Asn) significantly enhanced TG activity, but the TG products were immediately hydrolyzed into shorter GlcNAc(n).

View Article and Find Full Text PDF

Tri-N-acetylchitotriosyl moranoline, (GlcNAc)3-M, was previously shown to strongly inhibit lysozyme (Ogata M, Umemoto N, Ohnuma T, Numata T, Suzuki A, Usui T, Fukamizo T. 2013. A novel transition-state analogue for lysozyme, 4-O-β-tri-Nacetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate.

View Article and Find Full Text PDF

The structure of a GH19 chitinase from the moss Bryum coronatum (BcChi-A) in complex with the substrate was examined by X-ray crystallography and NMR spectroscopy in solution. The X-ray crystal structure of the inactive mutant of BcChi-A (BcChi-A-E61A) liganded with chitin tetramer (GlcNAc)4 revealed a clear electron density of the tetramer bound to subsites -2, -1, +1, and +2. Individual sugar residues were recognized by several amino acids at these subsites through a number of hydrogen bonds.

View Article and Find Full Text PDF

The intact cells of Rhizopus oligosporus NRRL2710, whose cell walls are abundant source of N-acetylglucosamine (GlcNAc) and glucosamine (GlcN), were digested with three chitinolytic enzymes, a GH-46 chitosanase from Streptomyces sp. N174 (CsnN174), a chitinase from Pyrococcus furiosus, and a chitinase from Trichoderma viride, respectively. Solubilization of the intact cells by CsnN174 was found to be the most efficient from solid state CP/MAS (13)C NMR spectroscopy.

View Article and Find Full Text PDF

Two carbohydrate binding modules (DD1 and DD2) belonging to CBM32 are located at the C terminus of a chitosanase from Paenibacillus sp. IK-5. We produced three proteins, DD1, DD2, and tandem DD1/DD2 (DD1+DD2), and characterized their binding ability.

View Article and Find Full Text PDF

Chitinase C from Ralstonia sp. A-471 (Ra-ChiC) has a catalytic domain sequence similar to goose-type (G-type) lysozymes and, unlike other chitinases, belongs to glycohydrolase (GH) family 23. Using NMR spectroscopy, however, Ra-ChiC was found to interact only with the chitin dimer but not with the peptidoglycan fragment.

View Article and Find Full Text PDF

The substrate-binding mode of a 26-kDa GH19 chitinase from rye, Secale cereale, seeds (RSC-c) was investigated by crystallography, site-directed mutagenesis and NMR spectroscopy. The crystal structure of RSC-c in a complex with an N-acetylglucosamine tetramer, (GlcNAc)(4) , was successfully solved, and revealed the binding mode of the tetramer to be an aglycon-binding site, subsites +1, +2, +3, and +4. These are the first crystallographic data showing the oligosaccharide-binding mode of a family GH19 chitinase.

View Article and Find Full Text PDF

Family GH19 chitinases have been recognized as important in the plant defense against fungal pathogens. However, their substrate-recognition mechanism is still unknown. We report here the first resonance assignment of NMR spectrum of a GH19 chitinase from moss, Bryum coronatum (BcChi-A).

View Article and Find Full Text PDF

The interaction between a goose-type lysozyme from ostrich egg white (OEL) and chitin oligosaccharides [(GlcNAc)(n) (n = 2, 4 and 6)] was studied by nuclear magnetic resonance (NMR) spectroscopy. A stable isotope-labelled OEL was produced in Pichia pastoris, and backbone resonance assignments for the wild-type and an inactive mutant (E73A OEL) were achieved using modern multi-dimensional NMR techniques. NMR titration was performed with (GlcNAc)(n) for mapping the interaction sites of the individual oligosaccharides based on the shifts in the two-dimensional heteronuclear single quantum correlation (HSQC) resonances.

View Article and Find Full Text PDF