Manufacturing systems need to be resilient and self-organizing to adapt to unexpected disruptions, such as product changes or rapid order, in supply chain changes while increasing the automation level of robotized logistics processes to cope with the lack of human experts. Deep Reinforcement Learning is a potential solution to solve more complex problems by introducing artificial neural networks in Reinforcement Learning. In this paper, a game engine was used for Deep Reinforcement Learning training, which allows visualization of view learning and result processes more intuitively than other tools, as well as a physical engine for a more realistic problem-solving environment.
View Article and Find Full Text PDF