Many bacteria enable locomotion by rotating their flagellum. It has been suggested that this rotation is realized by the rotary motion of the stator unit, MotAB, which is driven by proton transfer across the membrane. Recent cryo-electron microscopy studies have revealed a 5:2 MotAB configuration, in which a MotB dimer is encircled by a ring-shaped MotA pentamer.
View Article and Find Full Text PDFChromatin, the complex assembly of DNA and associated proteins, plays a pivotal role in orchestrating various genomic functions. To aid our understanding of the principles underlying chromatin organization, we introduce Hi-C metainference, a Bayesian approach that integrates Hi-C contact frequencies into multiscale prior models of chromatin. This approach combines both bottom-up (the physics-based prior) and top-down (the data-driven posterior) strategies to characterize the 3D organization of a target genomic locus.
View Article and Find Full Text PDFiSoLF is a coarse-grained (CG) model for lipid molecules with the implicit-solvent approximation used in molecular dynamics (MD) simulations of biological membranes. Using the original iSoLF (iSoLFv1), MD simulations of lipid bilayers consisting of either POPC or DPPC and these bilayers, including membrane proteins, can be performed. Here, we improve the original model, explicitly treating the electrostatic interactions between different lipid molecules and adding CG particle types.
View Article and Find Full Text PDFRecently, cellular biomolecular condensates formed via phase separation have received considerable attention. While they can be formed either in cytosol (denoted as 3D) or beneath the membrane (2D), the underlying difference between the two has not been well clarified. To compare the phase behaviors in 3D and 2D, postsynaptic density (PSD) serves as a model system.
View Article and Find Full Text PDFThe phase separation model for transcription suggests that transcription factors (TFs), coactivators, and RNA polymerases form biomolecular condensates around active gene loci and regulate transcription. However, the structural details of condensates remain elusive. In this study, for Nanog, a master TF in mammalian embryonic stem cells known to form protein condensates in vitro, we examined protein structures in the condensates using residue-level coarse-grained molecular simulations.
View Article and Find Full Text PDFThe high-speed atomic force microscopy (HS-AFM) is a unique and prominent method to observe structural dynamics of biomolecules at single molecule level at near-physiological condition. To achieve high temporal resolution, the probe tip scans the stage at high speed which can cause the so-called parachuting artifact in the HS-AFM images. Here, we develop a computational method to detect and remove the parachuting artifact in HS-AFM images using the two-way scanning data.
View Article and Find Full Text PDFDNA translocases, such as RNA polymerases, inevitably collide with nucleosomes on eukaryotic chromatin. Upon these collisions, histone chaperones are suggested to facilitate nucleosome disassembly and re-assembly. In this study, by performing in vitro transcription assays and molecular simulations, we found that partial unwrapping of a nucleosome by an RNA polymerase dramatically facilitates an H2A/H2B dimer dismantling from the nucleosome by Nucleosome Assembly Protein 1 (Nap1).
View Article and Find Full Text PDFHigh-speed (HS) atomic force microscopy (AFM) can be used to observe structural dynamics of biomolecules under near-physiological conditions. In the AFM measurement, the probe tip scans an area of interest and acquires height data pixel by pixel so that the obtained AFM image contains a measurement time difference. In this study, to integrate molecular dynamics simulations with asynchronous HS-AFM movie data, we developed a particle smoother (PS) method for Bayesian data assimilation, one of the machine learning approaches, by extending the previous particle filter method.
View Article and Find Full Text PDFObserving the structural dynamics of biomolecules is vital to deepening our understanding of biomolecular functions. High-speed (HS) atomic force microscopy (AFM) is a powerful method to measure biomolecular behavior at near physiological conditions. In the AFM, measured image profiles on a molecular surface are distorted by the tip shape through the interactions between the tip and molecule.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2022
The organization of Eukaryotic DNA into chromatin has profound implications for the processing of genetic information. In the past years, molecular dynamics (MD) simulations proved to be a powerful tool to investigate the mechanistic basis of chromatin biology. We review recent all-atom and coarse-grained MD studies revealing how the structure and dynamics of chromatin underlie its biological functions.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) has received considerable attention in recent years for explaining the formation of cellular biomolecular condensates. The fluidity and the complexity of their components make molecular simulation approaches indispensable for gaining structural insights. Domain-resolution mesoscopic model simulations have been explored for cases in which condensates are formed by multivalent proteins with tandem domains.
View Article and Find Full Text PDFFF ATP synthase, a ubiquitous enzyme that synthesizes most ATP in living cells, is composed of two rotary motors: a membrane-embedded proton-driven F motor and a catalytic F motor. These motors share both central and peripheral stalks. Although both F and F have pseudo-symmetric structures, their symmetries do not match.
View Article and Find Full Text PDFDNA mismatches are frequently generated by various intrinsic and extrinsic factors including DNA replication errors, oxygen species, ultraviolet, and ionizing radiation. These mismatches should be corrected by the mismatches repair (MMR) pathway to maintain genome integrity. In the () MMR pathway, MutS searches and recognizes a base-pair mismatch from millions of base-pairs.
View Article and Find Full Text PDFIn FF ATP synthase, driven by the proton motive force across the membrane, the F motor rotates the central rotor and induces conformational changes in the F motor, resulting in ATP synthesis. Recently, many near-atomic resolution structural models have been obtained using cryo-electron microscopy. Despite high resolution, however, static information alone cannot elucidate how and where the protons pass through the F and how proton passage is coupled to F rotation.
View Article and Find Full Text PDFHigh-speed atomic force microscopy (HS-AFM) is a powerful technique to image the structural dynamics of biomolecules. We can obtain atomic-resolution structural information from the measured AFM image by superimposing a structural model on the image. We previously developed a flexible fitting molecular dynamics (MD) simulation method that allows for modest conformational changes when superimposed on an AFM image.
View Article and Find Full Text PDFResidue-level coarse-grained (CG) models have become one of the most popular tools in biomolecular simulations in the trade-off between modeling accuracy and computational efficiency. To investigate large-scale biological phenomena in molecular dynamics (MD) simulations with CG models, unified treatments of proteins and nucleic acids, as well as efficient parallel computations, are indispensable. In the GENESIS MD software, we implement several residue-level CG models, covering structure-based and context-based potentials for both well-folded biomolecules and intrinsically disordered regions.
View Article and Find Full Text PDFFront Mol Biosci
November 2021
Recently, the molecular mechanisms of transcription initiation have been intensively studied. Especially, the cryo-electron microscopy revealed atomic structure details in key states in the eukaryotic transcription initiation. Yet, the dynamic processes of the promoter DNA opening in the pre-initiation complex remain obscured.
View Article and Find Full Text PDFBiological membranes that play major roles in diverse functions are composed of numerous lipids and proteins, making them an important target for coarse-grained (CG) molecular dynamics (MD) simulations. Recently, we have developed the CG implicit solvent lipid force field (iSoLF) that has a resolution compatible with the widely used Cα protein representation [D. Ugarte La Torre and S.
View Article and Find Full Text PDFNucleic Acids Res
September 2021
Translocases such as DNA/RNA polymerases, replicative helicases, and exonucleases are involved in eukaryotic DNA transcription, replication, and repair. Since eukaryotic genomic DNA wraps around histone octamers and forms nucleosomes, translocases inevitably encounter nucleosomes. A previous study has shown that a nucleosome repositions downstream when a translocase collides with the nucleosome.
View Article and Find Full Text PDFArchitectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s).
View Article and Find Full Text PDFIn molecular dynamics simulations, the limited time step size has been a barrier to simulating long-time behaviors. Implicit time integration methods allow markedly larger time steps than the standard explicit time method, although they have major drawbacks such as overheads solving linear systems and instability of Newton iterations. To overcome these issues, we propose a semi-implicit time integration scheme, the semi-implicit Hessian correction (SimHec) scheme, for overdamped Langevin dynamics.
View Article and Find Full Text PDFThe condensin protein complex compacts chromatin during mitosis using its DNA-loop extrusion activity. Previous studies proposed scrunching and loop-capture models as molecular mechanisms for the loop extrusion process, both of which assume the binding of double-strand (ds) DNA to the hinge domain formed at the interface of the condensin subunits Smc2 and Smc4. However, how the hinge domain contacts dsDNA has remained unknown.
View Article and Find Full Text PDF