Publications by authors named "Shoji Mamoru"

Synthetic monocarbonyl analogs of curcumin (MACs) are cytotoxic against several cancers including head and neck cancer, pancreatic cancer, colon cancer, and breast cancer. Mechanisms of action include depolarization of the mitochondrial membrane potential and inhibition of NF-κB, leading to apoptosis. We previously demonstrated that UBS109 (MAC), has preventive effects on bone loss induced by breast cancer cell lines.

View Article and Find Full Text PDF

Curcumin is a polyphenolic constituent of turmeric that is known to have various molecular effects in preclinical models, leading to prevention and anticancer properties. In clinical trials, curcumin has failed to demonstrate activity against pancreatic cancer possibly due to its low bioavailability and potency. Using the curcumin molecular model, our group and others have synthesized several analogs with better bioavailability and higher potency in pancreatic cancer in vitro and xenograft models.

View Article and Find Full Text PDF

Regucalcin plays a crucial role as a suppressor of transcription signaling, and its diminished expression or activity may play a key role in human carcinogenesis. Higher regucalcin expression has been demonstrated to prolong survival of the patients of pancreatic cancer, breast cancer, and hepatocellular carcinoma. Moreover, we investigated an involvement of regucalcin in human lung cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a leading cancer globally and its survival rates can be linked to higher expression of the regucalcin gene.
  • Overexpression of regucalcin in HCC cells suppresses cell growth and migration by inducing cell cycle arrest and manipulating various signaling pathways.
  • These findings suggest that regucalcin could be a potential therapeutic target for HCC, as low levels may increase the risk of developing this cancer.
View Article and Find Full Text PDF

Human breast cancer is highly metastatic to bone and drives bone turnover. Breast cancer metastases cause osteolytic lesions and skeletal damage that leads to bone fractures. Regucalcin, which plays a pivotal role as an inhibitor of signal transduction and transcription activity, has been suggested to act as a suppressor of human cancer.

View Article and Find Full Text PDF

Combination of dietary/herbal spice curcumin (Cur) and COX inhibitors has been tested for improving therapeutic efficacy in pancreatic cancer (PC). The objective of this study was to identify agent with low toxicity and COX-independent mechanism to induce PC cell growth inhibition when used along with Cur. Anticancer NSAID, tolfenamic acid (TA) and Cur combination were evaluated using PC cell lines.

View Article and Find Full Text PDF

The transcription factor NF-κB plays a central role in angiogenesis in colorectal cancer (CRC). Curcumin is a natural dietary product that inhibits NF-κB. The objective of this study is to evaluate the antiangiogenic effects of curcumin and two potent synthetic analogues (EF31 and UBS109) in CRC.

View Article and Find Full Text PDF

Approximately 90% of all pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is a highly aggressive malignancy and is one of the deadliest. This poor clinical outcome is due to the prominent resistance of pancreatic cancer to drug and radiation therapies.

View Article and Find Full Text PDF

Cell cycle progression and DNA synthesis are essential steps in cancer cell growth and resistance. Thymidylate synthase (TS) is a therapeutic target for 5FU. Curcumin is a potent inhibitor of NF-κB.

View Article and Find Full Text PDF

Curcumin (Cur) has been extensively studied in several types of malignancies including colorectal cancer (CRC); however its clinical application is greatly affected by low bioavailability. Several strategies to improve the therapeutic response of Cur are being pursued, including its combination with small molecules and drugs. We investigated the therapeutic efficacy of Cur in combination with the small molecule tolfenamic acid (TA) in CRC cell lines.

View Article and Find Full Text PDF

Pancreatic cancer is a highly aggressive malignancy with a notoriously dismal prognosis. A major contributor to this poor clinical outcome is pancreatic cancer's prominent chemoresistance. The present study was undertaken to determine whether the flavonoid p‑hydroxycinnamic acid (HCA), which is a botanical factor, possesses anticancer effects on cloned human pancreatic cancer MIA PaCa‑2 cells that possess resistance to radiation therapy in vitro.

View Article and Find Full Text PDF

Tumor invasion into bone tissues is associated with osteoclast and osteoblast recruitment, resulting in the liberation of growth factors from the bone matrix, which can feed back to enhance tumor growth resulting in the vicious cycle of bone metastasis. Activated nuclear factor-κB (NF-κB) in breast cancer cells has been shown to play a crucial role in the osteolytic bone metastasis of breast cancer in stimulating osteoclastogenesis. The flavonoid p-hydroxycinnamic acid (HCA) mediates bone anabolic and anti-catabolic effects by stimulating osteoblastic bone formation and suppressing osteoclastic bone resorption.

View Article and Find Full Text PDF

Breast cancer aberrantly expresses tissue factor (TF) in cancer tissues and cancer vascular endothelial cells (VECs). TF plays a central role in cancer angiogenesis, growth, and metastasis and, as such, is a target for therapy and drug delivery. TF is the cognate receptor of factor VIIa (fVIIa).

View Article and Find Full Text PDF

We have developed a specific technique for imaging cancer in vivo using Cy5.5-labeled factor VIIa (fVIIa), clotting-deficient FFRck-fVIIa, paclitaxel-FFRck-fVIIa, and anti-tissue factor (TF) antibody. FVIIa is the natural ligand for TF.

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIFs) and NF-κB play essential roles in cancer cell growth and metastasis by promoting angiogenesis. Heat shock protein 90 (Hsp90) serves as a regulator of HIF-1α and NF-κB protein. We hypothesized that curcumin and its analogues EF31 and UBS109 would disrupt angiogenesis in pancreatic cancer (PC) through modulation of HIF-1α and NF-κB.

View Article and Find Full Text PDF

UBS109 is a curcumin analog that possesses antitumor properties has been shown to stimulate osteoblastogenesis and suppress osteoclastogenesis in vitro. This study was undertaken to determine whether UBS109 might alleviate the inhibitory activity of breast cancer cells on osteoblastic mineralization and stimulatory effects on osteoclastogenesis. Mouse bone marrow cells were cocultured with breast cancer MDA-MB-231 bone metastatic cells in vitro.

View Article and Find Full Text PDF

To address the shortcomings of the natural product curcumin, many groups have created analogues that share similar structural features while displaying superior properties, particularly in anticancer drug discovery. Relatively unexplored have been the mechanisms by which such compounds are metabolized. A comprehensive in vitro study of a curcumin analogue (UBS109) in liver S9 fractions from five different species is presented.

View Article and Find Full Text PDF

Purpose: Curcumin, a keto-enol constituent of turmeric, has in vitro and in vivo antitumor activity. However, in vivo potency is low due to poor oral absorption. The mono-carbonyl analog, 3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone acetate (EF-24, NSC 716993), exhibited broad-spectrum activity in the NCI anticancer cell line screen and potent antiangiogenesis activity in a HUVEC cell migration assay.

View Article and Find Full Text PDF

Bone metastasis of breast cancer typically leads to osteolysis, which causes severe pathological bone fractures and hypercalcemia. Bone homeostasis is skillfully regulated through osteoblasts and osteoclasts. Bone loss with bone metastasis of breast cancer may be due to both activation of osteoclastic bone resorption and suppression of osteoblastic bone formation.

View Article and Find Full Text PDF

The natural compound curcumin has been investigated as an anticancer agent in many cellular systems, in animal models and in the clinic. The overriding negative characteristics of curcumin are its low solubility, weak potency and poor bioavailability. We have examined the efficacy and mechanism of action of a synthetic curcumin analog, UBS109, in head and neck squamous cell carcinoma.

View Article and Find Full Text PDF

The bioactive flavonoid p-hydroxycinnamic acid (HCA), which is an intermediate-metabolic substance in plants and fruits, is synthesized from tyrosine. The biological effect of HCA is poorly understood. Among cinnamic acid and its related compounds, HCA has a specific-anabolic effect on bone, being found to stimulate osteoblastogenesis and to inhibit osteoclastogenesis through the suppression of NF-κB signaling, thereby preventing bone loss.

View Article and Find Full Text PDF

DNA methylation is a rational therapeutic target in pancreatic cancer. The activity of novel curcumin analogues EF31 and UBS109 as demethylating agents were investigated. MiaPaCa-2 and PANC-1 cells were treated with vehicle, curcumin, EF31 or UBS109.

View Article and Find Full Text PDF

Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss is induced due to decreased osteoblastic bone formation and increased osteoclastic bone resorption with various pathologic states. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem.

View Article and Find Full Text PDF

Objectives are to examine the efficacy, pharmacokinetics, and toxicology of a synthetic curcumin analog EF31 in head and neck squamous cell carcinoma. The synthesis of EF31 was described for the first time. Solubility of EF24 and EF31 was compared using nephelometric analysis.

View Article and Find Full Text PDF

We previously reported a novel drug delivery system, drug-linker-Phe-Phe-Arg-methylketone (FFR-mk)-factor VIIa (fVIIa). The method utilizes tissue factor (TF), which is aberrantly and abundantly expressed on many cancer cells. The advantage of this delivery system is its ability to furnish a potent anticancer drug specifically to the tumor vasculature and cancer cells.

View Article and Find Full Text PDF