Purpose Of Review: MRI-guided stereotactic laser interstitial thermal therapy (LiTT) has been utilized in the surgical treatment of discrete, small epileptogenic lesions. This review summarizes the current literature and addresses the clinical application of this technique.
Recent Findings: LiTT has the potential to reduce the morbidity and discomfort of epilepsy surgery.
Background: We sought to determine if ripple oscillations (80-120 Hz), detected in intracranial electroencephalogram (iEEG) recordings of patients with epilepsy, correlate with an enhancement or disruption of verbal episodic memory encoding.
Methods: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch and included the seizure onset zone (SOZ) as a covariate in the LRMs.
Objective: To develop a reliable software method using a topographic analysis of time-frequency plots to distinguish ripple (80-200 Hz) oscillations that are often associated with EEG sharp waves or spikes (RonS) from sinusoid-like waveforms that appear as ripples but correspond with digital filtering of sharp transients contained in the wide bandwidth EEG.
Methods: A custom algorithm distinguished true from false ripples in one second intracranial EEG (iEEG) recordings using wavelet convolution, identifying contours of isopower, and categorizing these contours into sets of open or closed loop groups. The spectral and temporal features of candidate groups were used to classify the ripple, and determine its duration, frequency, and power.
Objective: To develop and validate a detector that identifies ripple (80-200 Hz) events in intracranial EEG (iEEG) recordings in a referential montage and utilizes independent component analysis (ICA) to eliminate or reduce high-frequency artifact contamination. Also, investigate the correspondence of detected ripples and the seizure onset zone (SOZ).
Methods: iEEG recordings from 16 patients were first band-pass filtered (80-600 Hz) and Infomax ICA was next applied to derive the first independent component (IC1).
We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings.
View Article and Find Full Text PDFIn Parkinson's disease (PD), striatal dopamine denervation results in a cascade of abnormalities in the single-unit activity of downstream basal ganglia nuclei that include increased firing rate, altered firing patterns, and increased oscillatory activity. However, the effects of these abnormalities on cortical function are poorly understood. Here, in humans undergoing deep brain stimulator implantation surgery, we use the novel technique of subdural electrocorticography in combination with subthalamic nucleus (STN) single-unit recording to study basal ganglia-cortex interactions at the millisecond time scale.
View Article and Find Full Text PDFMovement disorders of basal ganglia origin may arise from abnormalities in synchronized oscillatory activity in a network that includes the basal ganglia, thalamus and motor cortices. In humans, much has been learned from the study of basal ganglia local field potentials recorded from temporarily externalized deep brain stimulator electrodes. These studies have led to the theory that Parkinson's disease has characteristic alterations in the beta frequency band (13-30 Hz) in the basal ganglia-thalamocortical network.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
March 2011
Background: Human intrastriatal fetal allografts survive over long periods of time in the brains of Parkinson's disease (PD) patients and integrate into host circuitry. However, some grafted patients with a prior history of levodopa-induced dyskinesias have developed off-medication dyskinesias and dystonias following allografting whose mechanism remains poorly understood. The authors present single-unit discharge characteristics in the external and internal globus pallidus (GPe and GPi) in an awake patient with PD undergoing microelectrode-guided surgery for pallidal deep brain stimulation, 10 years following bilateral intraputamenal fetal mesencephalic allografting in an NIH-funded protocol.
View Article and Find Full Text PDFMost models of dystonia pathophysiology predict alterations of activity in the basal ganglia thalamocortical motor circuit. The globus pallidus interna (GPi) shows bursting and oscillatory neuronal discharge in both human dystonia and in animal models, but it is not clear which intrinsic basal ganglia pathways are implicated in this abnormal output. The subthalamic nucleus (STN) receives prominent excitatory input directly from cortical areas implicated in dystonia pathogenesis and inhibitory input from the external globus pallidus.
View Article and Find Full Text PDFIntroduction: Deep brain stimulation of the posterior hypothalamic region (PHR) is an emerging technique for the treatment of medically intractable cluster headache. Few reports have analyzed single unit neuronal recordings in the human PHR. We report properties of spontaneous neuronal discharge in PHR for 6 patients who underwent DBS for cluster headaches.
View Article and Find Full Text PDFThe presence of high frequency discharge neurons with long periods of silence or "pauses" in the globus pallidus pars externa (GPe) is a unique identifying feature of this nucleus. Prior studies have demonstrated that pause characteristics reflect synaptic inputs into GPe. We hypothesized that GPe pause characteristics should distinguish movement disorders whose basal ganglia network abnormalities are different.
View Article and Find Full Text PDFChorea is the predominant motor manifestation in the early symptomatic phase of adult onset Huntington's disease (HD). Pathologically, this stage is marked by differential loss of striatal neurons contributing to the indirect pathway. This pattern of neuronal loss predicts decreased neuronal firing rates in GPi and increased firing rates in GPe, the opposite of the changes in firing rate known to occur in Parkinson's disease (PD).
View Article and Find Full Text PDF