Although mutations in the Wnt/β-catenin signaling pathway are linked with the metabolic syndrome and type 2 diabetes in humans, the mechanism is unclear. High-fat-fed male C57BL/6 mice were treated for 4 wk with a 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO) to decrease hepatic and adipose expression of β-catenin. β-Catenin mRNA decreased by ≈80% in the liver and by 70% in white adipose tissue relative to control ASO-treated mice.
View Article and Find Full Text PDFApoA5 has a critical role in the regulation of plasma TG concentrations. In order to determine whether ApoA5 also impacts ectopic lipid deposition in liver and skeletal muscle, as well as tissue insulin sensitivity, we treated mice with an antisense oligonucleotide (ASO) to decrease hepatic expression of ApoA5. ASO treatment reduced ApoA5 protein expression in liver by 60-70%.
View Article and Find Full Text PDFThe discovery and optimization of a novel series of FATP1 inhibitors are described. Through the derivatization process, arylpiperazine derivatives 5k and 12a were identified as possessing potent in vitro activity against human and mouse FATP1s as well as excellent pharmacokinetic properties. In vivo evaluation of triglyceride accumulation in the liver, white gastrocnemius muscle and soleus is also described.
View Article and Find Full Text PDFEstrogen replacement therapy reduces the incidence of type 2 diabetes in postmenopausal women; however, the mechanism is unknown. Therefore, the aim of this study was to evaluate the metabolic effects of estrogen replacement therapy in an experimental model of menopause. At 8 weeks of age, female mice were ovariectomized (OVX) or sham (SHAM) operated, and OVX mice were treated with vehicle (OVX) or estradiol (E2) (OVX+E2).
View Article and Find Full Text PDFThe discovery, optimization and structure-activity relationship of novel FATP1 inhibitors have been described. The detailed SAR studies of each moiety of the inhibitors combined with metabolite analysis led to the identification of the potent inhibitors 11p and 11q with improved blood stability.
View Article and Find Full Text PDFUnlabelled: Nonalcoholic fatty liver disease (NAFLD) and insulin resistance have recently been found to be associated with increased plasma concentrations of apolipoprotein CIII (APOC3) in humans carrying single nucleotide polymorphisms within the insulin response element of the APOC3 gene. To examine whether increased expression of APOC3 would predispose mice to NAFLD and hepatic insulin resistance, human APOC3 overexpressing (ApoC3Tg) mice were metabolically phenotyped following either a regular chow or high-fat diet (HFD). After HFD feeding, ApoC3Tg mice had increased hepatic triglyceride accumulation, which was associated with cellular ballooning and inflammatory changes.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor γ (PPARγ; NR1C3) is known as a key regulator of adipocytogenesis and the molecular target of thiazolidinediones (TZDs), also known as antidiabetic agents. Despite the clinical benefits of TZDs, their use is often associated with adverse effects including peripheral edema, congestive heart failure, and weight gain. Here we report the identification and characterization of a non-thiazolidinedione PPARγ partial agonist, Cerco-A, which is a derivative of the natural product, (-)-cercosporamide.
View Article and Find Full Text PDFMice overexpressing acylCoA:diacylglycerol (DAG) acyltransferase 2 in the liver (Liv-DGAT2) have been shown to have normal hepatic insulin responsiveness despite severe hepatic steatosis and increased hepatic triglyceride, diacylglycerol, and ceramide content, demonstrating a dissociation between hepatic steatosis and hepatic insulin resistance. This led us to reevaluate the role of DAG in causing hepatic insulin resistance in this mouse model of severe hepatic steatosis. Using hyperinsulinemic-euglycemic clamps, we studied insulin action in Liv-DGAT2 mice and their wild-type (WT) littermate controls.
View Article and Find Full Text PDFContributions of gluconeogenesis suppression in liver, kidney, and intestine as major gluconeogenic organs to the glucose-lowering effect of CS-917, a fructose 1,6-bisphosphatase inhibitor, was evaluated in overnight-fasted Goto-Kakizaki (GK) rats. CS-917 decreased plasma glucose by suppressing glucose release and lactate uptake from liver but not from kidney and intestine. These results suggest that hepatic gluconeogenesis suppression predominantly contributes to the glucose-lowering effect of CS-917 in GK rats.
View Article and Find Full Text PDFThe pharmacological effects of rivoglitazone, a novel thiazolidinedione-derivative peroxisome proliferator-activated receptor (PPAR)-gamma agonist, were characterized in vitro and in vivo. Rivoglitazone activated human PPARgamma more potently compared with rosiglitazone and pioglitazone and had little effect on PPARalpha and PPARdelta activity in luciferase reporter assays. In Zucker diabetic fatty (ZDF) rats, 14-day administration of rivoglitazone decreased the plasma glucose and triglyceride (TG) levels in a dose-dependent manner.
View Article and Find Full Text PDFMetformin is an anti-diabetic agent that has been reported to decrease plasma glucose by multiple mechanisms, such as decreasing hepatic glucose production and activating peripheral glucose utilization. In order to elucidate the primary glucose-lowering mechanism of metformin, the present study focused on a comparison of the acute effect between metformin and CS-917 as a direct gluconeogenesis inhibitor. We examined the effect of metformin and CS-917 on glucose turnover in intravenous glucose-loaded Goto-Kakizaki (GK) rats, and on gluconeogenesis and glucose utilization in rat hepatocytes.
View Article and Find Full Text PDF