Lysophosphatidic acid (LPA), an extracellular lipid mediator, exerts various cellular effects through activation of LPA receptors, LPA-LPA, in many types of cells including cancer cells. We recently found several missense mutations of Lpar1 in rat cancer tissues. One of these mutations is located at the extracellular tip of the seventh transmembrane domain of LPA, and another three mutations are found within the NPXXY motif in the seventh transmembrane domain.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) signaling is known to play biological and pathophysiological roles in many types of animals. Medaka (Oryzias latipes) is an experimental fish that can be easily maintained, propagated, and analyzed, and whose genome has been completely sequenced. However, there is limited information available regarding medaka LPA receptors.
View Article and Find Full Text PDF