Publications by authors named "Shohei Saitoh"

Secondary progressive multiple sclerosis (SPMS) is an autoimmune disease of the central nervous system (CNS) characterized by progressive motor dysfunction, sensory deficits, and visual problems. The pathological mechanism of SPMS remains poorly understood. In this study, we investigated the role of microglia, immune cells in the CNS, in a secondary progressive form of experimental autoimmune encephalomyelitis (EAE), the mouse model of SPMS.

View Article and Find Full Text PDF

Benzalkonium chloride (BZK) is a common preservative used in pharmaceutical and personal care products. ZnCl was recently reported to significantly potentiate the cytotoxicity of some biocidal compounds. In the present study, therefore, we compared the cytotoxic potency of BZK and then further studied the Zn-related actions of the most cytotoxic agent among BZK, using flow cytometric techniques with appropriate fluorescent probes in rat thymocytes.

View Article and Find Full Text PDF

Chlorhexidine (CHX) is an antibacterial agent used in various types of pharmaceutical products. Therefore, CHX is easily found around us. Owing to its positive charge, the electrochemical property of cell membranes was assumed to be a key point of cytotoxic action of CHX.

View Article and Find Full Text PDF

Previous studies on the cytotoxicity of arachidonic acid (ARA) elucidated the involvement of oxidative stress and Ca(2+). In the present study, the Zn(2+)-related cytotoxicity of ARA was studied by a flow cytometric technique with appropriate fluorescent probes in rat thymocytes. Addition of 10 μM ZnCl2 enhanced the increase in cell lethality induced by 10 μM ARA.

View Article and Find Full Text PDF

Tolylfluanid, a phenylsulfamide fungicide, is one of the many pesticides that are frequently detected in crops. Therefore, its health risk is a concern. Micromolar concentrations of tolylfluanid induce chromosomal aberrations and micronuclei in mammalian lymphocytes.

View Article and Find Full Text PDF

4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an antifouling agent that is an alternative to organotins such as tributyltin (TBT). Because DCOIT decreases catalase activity, it may increase the susceptibility of cells to oxidative stress. We examined the effects of DCOIT on rat thymocytes suffering from oxidative stress induced by H2O2.

View Article and Find Full Text PDF