INPP5E, a phosphoinositide 5-phosphatase, localizes on the ciliary membrane via its C-terminal prenyl moiety, and maintains the distinct ciliary phosphoinositide composition. The ARL3 GTPase contributes to the ciliary membrane localization of INPP5E by stimulating the release of PDE6D bound to prenylated INPP5E. Another GTPase, ARL13B, which is localized on the ciliary membrane, contributes to the ciliary membrane retention of INPP5E by directly binding to its ciliary targeting sequence.
View Article and Find Full Text PDFCompositions of proteins and lipids within cilia and on the ciliary membrane are maintained to be distinct from those of the cytoplasm and plasma membrane, respectively, by the presence of the ciliary gate. INPP5E is a phosphoinositide 5-phosphatase that is localized on the ciliary membrane by anchorage via its C-terminal prenyl moiety. In addition, the ciliary membrane localization of INPP5E is determined by the small GTPase ARL13B.
View Article and Find Full Text PDFThe intraflagellar transport (IFT) machinery, which includes the IFT-A and IFT-B complexes, mediates bidirectional trafficking of ciliary proteins. In addition to these complexes, the BBSome, which is composed of eight subunits that are encoded by the causative genes of Bardet-Biedl syndrome (BBS), has been proposed to connect the IFT machinery to ciliary membrane proteins, such as G protein-coupled receptors, to mediate their export from cilia. However, little is known about the connection between the IFT machinery and the BBSome.
View Article and Find Full Text PDFThe dynein-2 complex mediates trafficking of ciliary proteins by powering the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. Although 11 subunits are known to constitute the dynein-2 complex, with several light-chain subunits shared by the dynein-1 complex, the overall architecture of the dynein-2 complex has not been fully clarified. Utilizing the visible immunoprecipitation assay, we demonstrated the interaction modes among the dynein-2 subunits, including previously undefined interactions, such as that between WDR60 and the TCTEX1D2-DYNLT1/DYNLT3 dimer.
View Article and Find Full Text PDFProtein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery composed of large protein complexes. The BBSome consists of eight BBS proteins encoded by causative genes of Bardet-Biedl syndrome (BBS), and has been implicated in the trafficking of ciliary membrane proteins, including G protein-coupled receptors (GPCRs), by connecting the IFT machinery to cargo GPCRs. Membrane recruitment of the BBSome to promote cargo trafficking has been proposed to be regulated by the Arf-like small GTPase ARL6/BBS3, through its interaction with the BBS1 subunit of the BBSome.
View Article and Find Full Text PDFThe CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types.
View Article and Find Full Text PDFARL13B (a small GTPase) and INPP5E (a phosphoinositide 5-phosphatase) are ciliary proteins encoded by causative genes of Joubert syndrome. We here showed, by taking advantage of a visible immunoprecipitation assay, that ARL13B interacts with the IFT46 -: IFT56 (IFT56 is also known as TTC26) dimer of the intraflagellar transport (IFT)-B complex, which mediates anterograde ciliary protein trafficking. However, the ciliary localization of ARL13B was found to be independent of its interaction with IFT-B, but dependent on the ciliary-targeting sequence RVEP in its C-terminal region.
View Article and Find Full Text PDFIntraflagellar transport (IFT) is essential for assembly and maintenance of cilia and flagella as well as ciliary motility and signaling. IFT is mediated by multisubunit complexes, including IFT-A, IFT-B, and the BBSome, in concert with kinesin and dynein motors. Under high salt conditions, purified IFT-B complex dissociates into a core subcomplex composed of at least nine subunits and at least five peripherally associated proteins.
View Article and Find Full Text PDFRetrograde trafficking from the Golgi complex to endoplasmic reticulum (ER) through COPI-coated vesicles has been implicated in lipid homeostasis. Here, we find that a block in COPI-dependent retrograde trafficking promotes processing and nuclear translocation of sterol regulatory element binding proteins (SREBPs), and upregulates the expression of downstream genes that are involved in lipid biosynthesis. This elevation in SREBP processing and activation is not caused by mislocalization of S1P or S2P (also known as MBTPS1 and MBTPS2, respectively), two Golgi-resident endoproteases that are involved in SREBP processing, but instead by increased Golgi residence of SREBPs, leading to their increased susceptibility to processing by the endoproteases.
View Article and Find Full Text PDFWe recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)-transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn-TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn-TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery.
View Article and Find Full Text PDFIn this study, we elucidated the architectures of two multisubunit complexes, the BBSome and exocyst, through a novel application of fluorescent fusion proteins. By processing lysates from cells co-expressing GFP and RFP fusion proteins for immunoprecipitation with anti-GFP nanobody, protein-protein interactions could be reproducibly visualized by directly observing the immunoprecipitates under a microscope, and evaluated using a microplate reader, without requiring immunoblotting. Using this 'visible' immunoprecipitation (VIP) assay, we mapped binary subunit interactions of the BBSome complex, and determined the hierarchies of up to four subunit interactions.
View Article and Find Full Text PDF